跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林政彥
研究生(外文):Jeng-Yann Lin
論文名稱:微流體晶片之電滲流場分析與應用
論文名稱(外文):Analysis and Application of Electroosmotic Flow in Microfluidics
指導教授:楊瑞珍楊瑞珍引用關係
指導教授(外文):Ruey-Chuan Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:80
中文關鍵詞:微機電電滲流
外文關鍵詞:electroosmotic flowmems
相關次數:
  • 被引用被引用:4
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:2
本論文的研究目的主要在於微管電滲流場的理論基礎之探討,並應用於生物晶片中的檢測液注入技術。本文主要的研究重點分為三項,茲說明如下:
首先,本論文利用Nernst-Planck方程式來解電荷密度場,與古典的Boltzmann模式相比,Nernst-Planck方程式可以呈現更真實電荷密度的分佈情況,使流場的模擬能更趨近於真實,而其物理模式包括解流體電荷之濃度方程式來探討流體電荷分佈情況及入口區效應對濃度場之影響,‚解電場之Poisson方程式,其包含壁面效應之zeta 電位勢及驅動電壓之電場分佈,將zeta 電位勢與驅動電壓場合成單一電場來計算,ƒ解 Navier-Stokes方程式內含流體電荷之濃度及電場所造成的物體力之綜合影響。
電滲流(electroosmotic flow, EOF)的流動是由外加電場與壁面之zeta 電位( )交互作用所產生的物體力(body force)來驅動流場,因此可以知道zeta 電位對電滲流的重要性,我們考慮step change zeta電位分布的非均勻微管道,發現此時的流場會產生極大的不同。我們採用Nernst-Planck model來解正負離子濃度場的分布,以期能更完整地描述此流場的物理現象,並比較和傳統Poisson-Boltzmann model間的差異,此外,我們更將討論此類型流場其電雙層overlap時的物理現象。
在應用方面,我們以電滲流集中效應為基礎,設計一新式的1×3預集中注射系統,並提出控制電壓的模式,可輕易地將檢測液導入所需的檢測區內,且可以控制檢測液量的多寡,希望藉由此設計的概念使微流體晶片能有更多的使用功能。
A theoretical study of electroosmotic microchannel flows is investigated in this thesis. The focus is to find the optimum design and operation conditions in microchannels. Our research consists of three parts as expressed in the following.
First, in order to investigate the effect of the entry region on the flow characteristics and without assuming Boltzmann equation for the charge density distribution, we performed calculations using the full Navier-Stokes equation and Nernst-Planck equation. A nonlinear, two-dimensional Poisson equation governing the applied electrical potential and the zeta potential of solid-liquid boundary and the Nernst-Planck equation governing the ionic concentration distribution are numerically solved using a finite-difference method. The applied electrical potential and zeta potential are unified in the Poisson equation without using linear superposition. A body force caused by the interaction between the charge density and the applied electrical potential field is included in the full Navier-Stokes equations.
Second, the term electroosmotic flow (EOF) refers to the bulk flow of an aqueous solution induced by the application of the electric field to the zeta potential. The characteristics of EOF in a microchannel depend upon the nature of the zeta potential, i.e. whether it is uniform or nonuniform. We performed the calculation using the full Navier-Stokes equation and Nerst-Planck equation to model the change in EOF characteristics that occur when a step change in zeta potential is applied. We present a comparison of the results predicted by the classical Poisson-Boltzmann model with those given by the proposed model. This paper uses the Nernst-Planck model to explore the effect on the EOF in the case where the EDL overlaps within the channel.
Finally, we design a novel 1×3 pre-focused injection system with electrokinetic focusing effect and bring up a voltage control model. Sample can be easily led into the desired outlet ports precisely. We can control the quantity of sample by controlling the focusing voltage easily.
中文摘要 I
Abstract III
誌謝 V
目錄 VI
符號說明  VIII
圖目錄 X
第一章、序論 1
第二章、用Nernst-Planck方程式解電荷濃度場之流場方程式 9
第三章、Step change zeta電位分布之電滲流場 22
第四章、利用電滲流預集中效應的微流體晶片注射系統 29
第五章、總結 36
參考文獻 38
附錄 61
自傳 67
參考文獻
[1]Bao, M., Wang, W., “Future of Microelectromechanical Systems (MEMS),” Ssensors and Actuators A56, pp.135-141 (1996).
[2]Gravesen, P., Branebjerg, O. J. and Jensen, S. “Microfluidics – a Review,” Journal of Micromechanics And Microengineering, Vol. 3, pp. 168-182 (1993).
[3]Shoji, S., “Microfabrication Technologies and Micro-flow Devices for Chemical and Bio-chemical Micro Flow Systems, ”Microprocesses and Nanotechnology '99, pp.72 –73 (1999).
[4]Harrison, D. J. and Berg, A., “Micro Total Analysis Systems ’98,” Kluwer Academic Publishers, Netherlands ( 1998).
[5]Tuckermann, D. B., and Pease, R. F. W., “Optimized Convective Cooling Using Micromachined Structrues,” J. Electrochem. Soc., 129, c98. (1982).
[6]Tuckermann, D. B., and Pease, R. F. W., “High-Performance Heat Sinks for VLSI,” IEEE Electron Device Lett., 2, 126-129. (1981).
[7]Rahman, M. M., and Gui, F., Adv. Electron. Package. 4(2), 685 (1993).
[8]Peng, X. F., Peterson, G. P. and Wang, B. X., “Friction Flow Characteristics of Water Flowing through Rectangular Microchannels,” Exp. Heat Transfer, 7, 249-264. (1994).
[9]Peng, X. F., Peterson, G. P. and Wang, B. X., “Heat Transfer Characteristics of Water Flowing through Microchannels,” Exp. Heat Transfer, 7, 265-283 (1994).
[10]Urbanck, W., Zemel, J. N., and Bau, H. H., J. Micromech. Microeng. 3, 206 (1993). Analytical Chemistry, 567, 111-113 (1984).
[11]Hunter, R. J., “Zeta Potential in Colloid Science: Principles and Applications,” Academic Press, New York, (1981).
[12]Tiselius, A., ”A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures, “ Trans. Faraday Soc. 33, 524 (1937).
[13]Harrison, D. J., Manz, A., Fan, Z. and Ludi, H., “Capillary Electrophoresis and Sample Injection Ssystems Integrated on a Planar Glass Chip,” Analytical Chemistry, 64, pp. 1926-1932 (1992).
[14]Seiler, K., Harrison, D. J. and Manz, A., ”Planar Glass Chips for Capillary Electrophoresis : Repetitive Sample Injection, Quantitation, Separation Efficiecy,” Analytical Chemistry, 65, pp. 1481-1488 (1993).
[15]Patankar, N. A., and Hu, H. H., “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Vol. 70, 1870-1881 (1998).
[16]Qiu, X. C., Hu, L., Masliyah, J. H. and Harrison, D. J., “Understanding Fluid Mechanics Within Electrokinetcally Pumped Microfluidic Chips,” I. Conference on Solid-State Sensors and Actuators, 16-19 (1997).
[17]Andreev, V. P., Dubrovsky, S. G. and Stepanov, Y. V., “Mathematical Modeling of Capillary Electrophoresis in Rectangular Channels,” J. Micro. Sep., 443-450 (1997).
[18]Yang, C., Li, D. and Masliyah, J. H., “Modeling Forced Liquid Convection in Rectangular Microchannels with Electrokinetic Effects,“ Int. J. Heat and Mass Transfer, 41, 4229-4249 (1998).
[19]Hu, L., Harrison, J. D. and Masliyah, J. H., “Numerical Model of Electrokinetic Flow for Capillary Electrophoresis,” J. of Colloid and Interface Science, 215, 300-312 (1999).
[20]Arulanandam, S., and Li, D., “Liquid Transport in Retangular Microchannels by Eletroosmotic pumping,” Colloids and Sufaces A: Physicochemical and Engineering Aspects, 161, 89-102 (2000).
[21]Ren, L. and Li, D., “Electroosmotic Flow in Heterogeneous Microchannels,” J. of Colloid and Interface Science, (accepted to appear in 2001)
[22]Dutta, p. and Beskok, A., “Analytical Solution of Combined Electroosmotic/ Pressure Driven Flows in Two-dimensional Straight Channels: Finite Debye Layer Effects,” Analytical Chemistry, 73, 1979-1986 (2001).
[23]Griffiths, S. and Nilson R. H., “Low-Dispersion Turns and Junctions for Microchannel Systems,” Analytical Chemistry, 73, 272-278 (2001).
[24]Yang, R. –J., Fu, L. –M. and Hwang, C. –C., “Electroosmotic Entry Flow in a Microchannel,” J. of Colloid and Interface Science, 244, 173-179 (2001).
[25]Fu, L. –M., Yang, R. –J. and Lee, G. –B., “Analysis of Geometry Effects on Band Spreading of Microchip Electrophoresis,” Electrophoresis. (accepted to appear).
[26]Arulanandam, S., Li, D., “Determining Potential and Surface Conductance by Monitoring the Current in Electro-osmotic Flow,” J. of Colloid and Interface Science, 225, 421-428 (2000).
[27]Hoffmann, K. A. and Chiang, S. T., “Computational Fluid Dynamics for Engineers-Volume 1,” Wichita, Ks, USA, (1993).
[28]Yang, R. –J., Fu, L. –M and Lin, Y. –C., “Electroosmotic Flow in Microchannels,” J. of Colloid and Interface Science, Vol. 239, 98-105, (2001).
[29]Patankar, N. A., and Hu, H. H., “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Vol. 70, 1870-1881 (1998).
[30]Anderson, J. L, and Idol, W. K., “Electroosmosis through Pores with Nonuniformly Charged Walls,” Chem. Eng. Commun, 38, 93-106, (1985).
[31]Herr, A. E., Molho, J. I., Santiago, J. G., Mungal, M. G., and Kenny, T. W., “Electroosmotic Capillary Flow with Nonuniform Zeta Potential,” Anal. Chem, 72, 1053-1057, (2000).
[32]Strook, A. D., Weck, M., Chiu, D. T., Huck, W. T. S., Kenis, P. G. A., Ismagilov, R. F., and Whitesides, G. M., “Patterning Electro-osmotic Flow with Patterned Surface Charge,” Phys. Rev. Lett, 84, 3314-3317, (2000).
[33]Poto ek, B., Ga , B., Kenndler, E., and , M., ”Electroosmosis in Capillary Zone Electrophoresis with Non-uniform Zeta Potential,” J. Chromatogr. A 709, 51-62, (1995).
[34]Long, D., Stone, H. A., and Ajdari, A., “ Electroosmotic Flows Created by Surface Defects in Capillary Electrophoresis,” J. of Colloid and Interface Science, 212, 338-349, (1999).
[35]Li, D., Ren, L., “Electroosmotic Flow in Heterogeneous Microchannels,” J. of Colloid and Interface and Science, 234, 1-7, (2001).
[36]Weast, R., Astle, M. J. and Beyer, W. H., “CRC Handbook of Chemistry and Physics, “CRC Press, Boca Roton, 1986.
[37]Qu, W., Li, D., “A Model for Overlapped EDL Fields,” J. of Colloid and Interface Science, 224, 397-407, (2000).
[38]T.G.M. van de Ven, ”Colloidal hydrodynamics.” Academic Press, San Diego, 1989.
[39]Culbertson, C. T., Ramsey, R. S. and Ramsey, J. M., “Electroosmotically Induced Hydraulic Pumping on Microchips: Differential Ion Transport,” Analytical Chemistry, 72, 2285-2291. (2000).
[40]Bianchi, F., Ferrigno, R. and Girault, H. H., “Finite Element Simulation of an Electroosmotic-Driven Flow Division at a T-junction of Microscale Dimensions,” Analytical Chemistry, 72, 1987-1993. (2000).
[41]Jacobson, S. C. and Ramsey, J. M., “Electrokinetic Focusing in Microfabricated Channel Structures,” Analytical Chemistry, 69, 3212-3217. (1997).
[42]Ermakov, S. V., Jacobson, S. C. and Ramsey, J. M., “Computer Simulations of Electrokinetic Transport in Microfaricated Channel Structures,” Analytical Chemistry, 70, 4494-4504. (1998).
[43]Jacobson, S. C., Ermakov, S. V. and Ramsey, J. M., “Minimizing the Number of Voltage Sources and Fluid Reservoirs for Electrokinetic Valving in Microfluidic Devices,” Analytical Chemistry, 71, 3273-3276. (1999).
[44]Schrum, D. P., Culbertson, C. T., Jacobson, S. C. and Ramsey, J. M., “Microchip Flow Cytometry Using Electrokinetic Focusing,” Analytical Chemistry, 71, 4173-4177. (1999).
[45]Ermakov, S. V., Jacobson, S. C. and Ramsey, J. M., “Computer Simulations of Electrokinetic Injection Techniques in Microfluidic Devices,” Analytical Chemistry, 72, 3512-3517. (2000).
[46]Sobek, D., Senturia, S. D., Gray, M, L., Proceedings from Solid-State Sensor and Actuator Workshop, Hilton Head, SC, 1994: p260.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top