跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉伊清
研究生(外文):Yi-Ching Liu
論文名稱:以分子動力學方法研究微容器之流體行為
論文名稱(外文):Molecular Dynamics Simulation of Simple Liquid in Nano Containers
指導教授:楊瑞珍楊瑞珍引用關係
指導教授(外文):Ruey-Jen Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:80
中文關鍵詞:奈米科技微觀流體力學分子動力學
外文關鍵詞:molecular dynamicsnano technologymicrofluidics
相關次數:
  • 被引用被引用:4
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,奈米科技逐漸起步並成為一重要研究課題,例如微機電系統已牽涉到微米尺度的單一流場問題。傳統的方法已不能有效分析微觀尺度的傳輸現象。這個問題的發生由於在微觀尺寸或高應力作用下連續體或平衡假設不能成立。為了處理這類微觀尺度問題我們使用分子動力學模擬以了解微觀傳輸機制,流體-結構相互作用和在微觀下的尺度效應。本文使用分子動力學模擬以速度 抽動上板之內含凸塊的微管道與模擬上下板皆以速度 反方向抽動的微孔穴流。我們將以簡單流體模擬此兩種不同模型下之流體粒子動態特性與流場分析,在不同的時間平均下,探討其速度、密度分布情形。在此兩種不同的模型中,靠近壁面密度會有震盪情形發生,同時,對於一段較長之時間平均(十萬步以上),模型一之速度型類似傳統方法所預測,靠近壁面的速度亦非常趨近於零,然而,對於取較短的時間平均,速度型不平順,且在壁面的速度不一定接近於零,此外,我們亦以Navier-Stokes 方程式去預測模型二的速度場發現比分子動力學模擬結果為大。
Recent advances in nano-science and technology, like Micro-Electro Mechanical System (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a micron. Traditional approaches are unable to analyze microscale transport phenomena. This problem may be due to the continuum or equilibrium assumption breaking down for liquid flows in microscale geometries or under high stress. To address these microscale problems, we will use molecular dynamics simulation to analyze microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. We will simulate flows of two different micro-structures by molecular dynamics theory. One is a channel including a block by drawing the upper plate, and the other is a cavity by drawing upper plate and lower plate at opposite direction. We use simple fluid (Lennard Jones fluid) to study fluid particles’ dynamic properties and discuss the velocity and density distributions under different time averages. Density distributions near solid walls show oscillation. When we take longer time average (about one hundred thousand time steps), the velocity distribution of the model one is similar to results predicted by traditional method and the velocity near the wall is almost no-slip. However, the velocity profile is not smooth for shorter time averages, and the velocity near the wall is not necessarily no-slip. Moreover, we calculate velocity field of the model 2 by the Navier-Stokes equation. The calculated velocity field is smaller than that predicted by the molecular dynamics simulation.
目錄
摘要............................................I
ABSTRACT.......................................II
誌謝..........................................III
目錄.............. ............................IV
圖目錄.........................................VI
表目錄.........................................X
符號說明.......................................XI
第一章 緒論.....................................1
1-1 前言........................................1
1-2 分子動力學之歷史背景........................3
1-3 分子動力學之應用............................4
1-4 分子動力學之在流體力學應用上之文獻回顧......6
1-5 研究動機與方向..............................7
1-6 本文架構....................................9
第二章 分子動力學基礎理論......................10
2-1 分子間作用力與勢能函數.....................12
2-2 鄰近表列法.................................16
2-3 起始位置和速度 .............................18
2-4 週期型邊界條件與最小映像法則...............20
2-4-1 週期型邊界條件...........................20
2-4-2 最小映像法則.............................22
2-5 數值方法-預測修正法........................24
2-6 速度修正...................................26
第三章 模型建構與計算..........................28
3-1 計算流程...................................28
3-2 參數設定與模型之建構.......................31
3-3 勢能模式的選定.............................37
第四章 模擬結果分析與討論......................41
4-1網格的建購與統計平均........................41
4-2模型一之流場分析與討論......................43
4-3模型二之流場分析與討論......................62
第五章 結論與未來展望..........................72
參考文獻.......................................74
自述...........................................80
參考文獻
[1] C. C. Wang , A. R. Lopez, M. J. Stevens, S. J. Plimpton, “Molecular dynamics Simulations of Microscale Fluid Transport,” Sandia National Lab., U.S.A. (1998)
[2] Pong, K.-C., C.-M., Ho, Liu, J., Tai, Y.-C., “Non-Linear Pressure Distribuction in Uniform Microchannels,” Application of Microfabrication to Fluid Mechanics, ASME FED-Volume 197, New York (1994).
[3] Pfahler, J., Harley, J., Bau, H., and Zemel, J. N., ”Gas and Liquid Flow in small Channels,” Micromechanical Sensors, Actuators, and Systems, ASME DSC-Volume 32, New York, (1991)
[4] Alder, B. J. and Wainwright, T. E., J. Chem. Phys. 27 (1957) 1208.
[5] Gibson, J. B., Goland, A. N., Milgram, M., and Vineyard, G. H., Phys.
Rev. 120 (1960) 1229.
[6] A. Rahman, “Correlations in the Motion of Atoms in Liquid Argon”, Phys. Rev. 136A (1964) 405.
[7] J. E. Lennard-Jones, “The Determination of Molecular Fields. I. From the Variation of Viscosity of a Gas with Temperature,” Proc. Roy. Soc. (Lond.), 106A, 441 (1924); “The Determination of Molecular Fields. II. From the Equation of State of a Gas,” Proc. Roy. Soc. (Lond.), 106A, 463 (1924)
[8] J. H. Irving, and J. G. Kirkwood, ”The Statistical Mechanics of Transport Process. IV. The Equation of Hydrodynamics,” J. Chem Phys., 18, pp.817-820 (1950)
[9] Girifalco, L. A. and Weizer, V. G., “Application of the Morse Potential Function to Cubic Metails, Phys. Rev., 114, No.3 (1959), p687-690
[10] L. Verlet, “Computer ‘Experiments’ on Classical Fluids. I. Thermodynamical Propertier of Lennard-Jones Fluid,” Mol. Phys. Rev., 159, 98 (1967)
[11] D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 1995)
[12] D. J. Evans and G. P. Morriss, Statistical Mechanics of Non-Equilibrium Liquids (Academic, New York, 1990)
[13] J.Koplik and J. R. Banavar, and R. I. Tanner, “Continum Deduction From Molecular Hydrodynamics,” Annu. Rev. Fluid Mech., 27,267 (1995)
[14] B. D. Todd, D. J. Evans, and P. J. Davis, “Pressure Tensor for Inhomogeneous Fluids,” Phys. Rev., E52, 1627 (1995)
[15] A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, “Rheological Properties of Thin Liquid Films by Molecular Dynamics Simulations,” J. Non-Newtonian Fluid Mech., 69, 169 (1997)
[16] A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, “Nanorheology of Molecularly Thin Films of n-hexadecane in Couette Shear Flow by Molecular Dynamics Simulations,” J. Non-Newtonian Fluid Mech., 77, 53 (1998)
[17] Y. Z. Hu, H. Wang, Y. Guo, L. Q. Zheng, “Simulation of Lubricant Rheology in Thin Lubrication, Part 1: Simulation of Poiseuille Flow,” Wear, 196, 249 (1996)
[18] Y. Z. Hu, H. Wang, Y. Guo, Z. J. Shen, and L. Q. Zheng, “Simulation of Lubricant Rheology in Thin Lubrication, Part 2: Simulation of Couette Flow,” Wear, 196, 249 (1996)
[19] P. A. Thompson and M. O. Robbins, “Shear Flow near Solids: Epitaxial Order and Flow Boundary Conditions,” Phys. Rev., A 41, 6830 (1990)
[20] U. Heinbuch and J. Fischer, “Liquid Flow in Pores: Slip, No-Slip, or Multilayer Sticking,” Phys. Rev., A 40, 1144 (1989)
[21] A. Jabbarzadeh, J. D. Atkinson, and R. I. Tanner, “Effect of the Wall Roughness on Slip and Rheological Properties of Hexadecane in Molecular Dynamics Simulation of Couette Shear Flow between two Sinusoidal Walls,” Phys. Rev., E 61, 690 (2000)
[22] J. Koplik and J. Banavar, “Corner Flow in the Sliding Plate Problem,” Phys. Fluids, 7, 3118 (1995)
[23] J. Koplik and J. Banavar, “ Reentrant Corner Flows of Newtonian and Non- Newtonian,” j. Rheol, 41, 787 (1997)
[24] X. J. Fan, Nhan Phan-Thien, N. T. Tong, and Xu Diao, “Molecular Dynamics Simulation of a Liquid in a Complex Nano Channel Flow,” Phys. Fluids, 14, 1146 (2002)
[25] K. P. Travis, B. D. Todd, and D. J. Evans, “Departure from Navier-Stokes Hydrodynamics in Confined Liquids,” Phys. Rev. ,E 55, 4288 (1997)
[26] K. P. Travis, B. E. Gubbins, “Poiseuille Flow of Lennard-Jones Fluid in Narrow Slip Pores,” J. Chem. Phys., 112, 1984 (2000)
[27] J. M. Haile, Molecular Dynamics Simulation (John Wiley & Sons, Inc., 1992)
[28] Jacon N. Israelachvili, Intermolecular and Surface Forces, second edition (Academic Press, 1992)
[29] F. London, “Properties and Applications of Molecular Forces,” Zeit. Physik. Chem. B, 11, 222 (1930)
[30] W. Thomson, Lecture XVI, p.158
[31] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ,1971, Chapter 9)
[32] W. Loose and G. Ciccotti, “Temperature and Temperature Control in Non-equilibrium Molecular-Dynamics Simulations of the Shear Flow of Dense Liquids,” Phys. Rev., A 42, 3859, 1992
[33] D. J. Evans, S. T. Cui, H. J. M. Hanley, and G. C. Straty, “Conditions for the Existence of a Reentrant Solid Phase in a Sheared Atomic Fluid,” Phys. Rev., A 46, 6731 (1992)
[34] W. T. Ashurst and W. G. Hoover, “Dense-fluid Shear Viscosity via Non-equilibrium Molecular Dynamics,” Phys. Rev., A 11, 658 (1975)
[35] Peter A. Thompson and Mark O. Robbins, “Simulation of Contact-Line Motion: Slip and the Dynamic Contact Angle,” Phys. Rev. Lett., 63, 766 (1989)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top