跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張建宏
研究生(外文):Chien-Hung Chang
論文名稱:多晶矽薄膜製程之研究
論文名稱(外文):Study on the Fabricated Process of Poly-Si Thin Film
指導教授:趙隆山
指導教授(外文):Long-Sun Chao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:130
中文關鍵詞:多晶矽準分子雷射
外文關鍵詞:Excimer LaserPoly-Si
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1520
  • 評分評分:
  • 下載下載:478
  • 收藏至我的研究室書目清單書目收藏:1
在使用準分子雷射製作多晶矽薄膜時,能預先了解加熱工件的溫度分布,對製程會有相當的助益。本文建立了一數學模式來探討製程中,雷射熱源各項參數對於加熱工件溫度分布之影響,數值方法是採用有限差分法,以等效比熱-熱焓法來處理潛熱之釋放效應。由模式分析的結果可以發現,不考慮與考慮潛熱之溫度分布有明顯之差異,因此不宜忽略潛熱之效應。脈衝雷射的瞬間功率極高,使得a-Si薄膜產生迅速地升溫熔化並且快速地降溫凝固;分析中可知多孔性二氧化矽膜可有效減緩熱量傳遞到玻璃基板,並使熱量集中於a-Si薄膜。另外,透過適當的調整脈衝雷射能量密度、玻璃基板溫度與脈衝時間,可以增加多晶矽薄膜的凝固時間;同時選擇適當的覆蓋率可增加在x方向(與雷射照射方向垂直)之溫度梯度,有助於增加晶粒於x方向之長度。當能量密度或基板溫度愈高時,a-Si薄膜的熔化深度愈深,並且平均凝固速率愈低。由這些結果,可知經由模式的探討,能預測加熱工件的暫態溫度分布,透過對雷射熱源各項參數之分析,可提供有利於多晶矽薄膜製程之工作條件。
When excimer laser is used in making poly-Si thin films from a-Si ones, it will be very helpful if the temperature distributions of working pieces, including Si, SiO2 and glass layers, can be predicted in advance. In this thesis, a mathematical model was built to analyze the temperature fields of the working pieces under different control parameters, such as laser energy intensity, pulse width. The numerical scheme is the finite difference method and the specific heat-enthalpy method was used to handle the release of latent heat.
From the computing results, the temperature distributions considering the effect of latent heat are quite different from those without latent heat so that the latent heat should not be ignored in the analysis. With very high energy intensity, excimer laser makes the Si film’s temperature increase and decrease very rapidly, which leads to high melting and solidifying rates. The SiO2 layer could effectively decrease heat transferred to the glass substrate and keep most heat from laser in the Si layer. The solidification time of poly-Si can increase by raising the laser energy intensity, the temperature of glass substrate and the pulse width. Adjusting the pulse coverage fraction properly can induce the temperature gradient in the x direction, perpendicular to the incident direction of laser, which will increase the grain size in the x direction. Increasing the laser energy intensity and the temperature of glass substrate could enlarge the melting depth of Si and decrease the average growth rate of poly-Si.
From these results, it can be concluded that the proposed model could predict the temperature distributions of the working pieces and the analyses of different control parameters could provide preferable working conditions, which are good for the crystal growth of poly-Si
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XVI
第一章 緒論 1
1-1 簡介 1
1-1-1薄膜電晶體液晶顯示器(thin-film-transistor liquid crystal displays: TFT-LCDs) 3
1-1-2多晶矽薄膜的製作 4
1-1-3準分子雷射特性 5
1-2 文獻回顧 7
1-3 研究目的 9
第二章 理論分析 11
2-1 問題描述 11
2-2 基本假設 12
2-3 統御方程式 12
2-4 起始條件與邊界條件 13
2-5 雷射熱源的處理 14
第三章 數值方法 16
3-1 差分方程式與解法 16
3-2 潛熱效應之計算方法 17
3-3求解流程與收斂條件 21
第四章 測試與討論 22
4-1 潛熱效應測試 22
4-1-1 凝固模式 24
4-1-2 測試結果討論 27
4-2 網格密度測試 28
4-2-1 厚度方向(y方向)網格密度測試 28
4-2-2 長度方向(x方向)網格測試 29
第五章 結果與討論 31
5-1 連續式雷射熱源 31
5-1-1 潛熱對溫度場的影響 32
5-1-2 單層材料與雙層材料溫度場之比較 32
5-1-3 雷射功率對溫度場的影響 33
5-1-4雷射掃描速度對溫度場的影響 34
5-1-5不同深度下x方向的溫度分布情形 35
5-2 脈衝式雷射熱源 37
5-2-1 潛熱對溫度場的影響 40
5-2-2 能量密度對溫度場的影響 41
5-2-3 基板溫度對溫度場的影響 42
5-2-4 脈衝時間對溫度場的影響 43
5-2-5 覆蓋率對溫度場的影響 43
5-2-6 凝固速率 44
第六章 結論 46
參考文獻 48
附錄A 121
附錄B 溫度場的差分方程式 128
自述
1.Do-Hyun Choi, Eiichi Sadayuki, Osamu Sugiura, and Masakiyo Matsumura, “Lateral Growth of Poly-Si Film by Excimer Laser and Its Thin Film Transistor Application,” Jpn. J. Appl. Phys, Vol. 33, Part 1, No. 1A, pp.70-74, January, 1994.
2.Aaron Marmorstein, and Apostolos T. Voutsas, “A Systematic Study and Optimization of Parameters Affecting Grain Size and Surface Roughness in Excimer Laser Annealed Polysilicon Thin Films,” J. Appl. Phys., Vol. 82, No. 9, p. 1, 1997.
3.H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Kawata, M. Osumi, S. Tsuda, S. Nakano and Y. Kuwano, “Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High-Performance Poly-Si Thin Film Transistor,” Japanese Journal of Applied Physics, Vol. 30, No. 12B, pp. 3700-3703, December, 1991.
4.Hiroyuki Kuriyama, “Excimer laser crystallization of silicon films for AMLCDs,” in AMLCD, pp. 87-92, 1995.
5.Lambda Physik, Germany, “Excimer Laser Radiation for Silicon Thin Film Crystallization,” Highlights No.52, pp.1-4, 1997.
6.T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6×6 Inch 20 Lines-per-Inch Liquid-Crystal Display Panel,” IEEE Transactions on Electron Devices, Vol. ED-20, No. 11, pp. 995-1001, 1973.
7.P. G. Lecomber, W. E. Spear, and A. Ghaith, “Amorphous-Silicon Field-Effect Device and Possible Application,” Electronics Letters, Vol. 15, No. 6, pp. 179-181, March, 1979.
8.Kazuhiro Shimizu, and Osamu Sugiura, “High-mobility Poly-Si Thin-film Transistors Fabricated by a Novel Excimer Laser Crystallization Method,” IEEE Transactions on Electron Devices, Vol. 40, No. 1, January, 1993.
9.Tadashi Serikawa, and Seiiti Shirai, “Low Temperature Fabrication of High Mobility Poly-Si TFTs for Large Area LCDs,” IEEE Transactions on Electron Devices, Vol. 36, No. 9, pp. 1929-1933, September, 1989.
10.E. Fujii, K. Senda, F. Emoto, A. Yamamoto, A. Nakamura, Y. Uemoto, and G. Kano, “A Laser-recrystallization Technique for Silicon-TFT Integrated Circuits on Quartz Substrates and Its Application to Small-size Monolithic Active-matrix LCD’s,” IEEE Transactions on Electron Devices, Vol. 37, pp. 121-127, January 1990.
11.N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The Fabrication and Characterization of EEPROM Arrays on Glass Using a Low Temperature Poly-Si TFT Process,” IEEE Transactions on Electron Devices, Vol. 43, No. 11, pp. 1930-1936, November, 1996.
12.G. K. Giust, and T. W. Sigmon, “High-Performance Thin-Film Transistors Fabricated Using Excimer Laser Processing and Grain Engineering,” IEEE Transaction on Electron Devices, Vol. 45, No. 4, pp. 925-932, April, 1998.
13.G. K. Giust, and T. W. Sigmon, “Laser-Processed Thin-Film Transistors Fabricated from Sputtered Amorphous-Silicon Films,” IEEE Transaction on Electron Devices, Vol. 47, No. 1, pp. 207-213, January, 1998.
14.H. Kakinuma, M. Mohri, and T. Tsuruoka, “Mechanism of Low-Temperature Polycrystalline Silicon Growth from a SiF4/SiH4/H2 Plasma,” J. Appl. Phys, Vol. 77, No. 2, pp. 646-652, 1995.
15.W. G. Hawkins, “Polycrystalline-Silicon Device Technology for Large-Area Electronics,” IEEE Transaction on Electron Devices, Vol. ED-33, No. 4, pp. 477-481, April 1986.
16.T. Matsuyama, N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka, and S. Tsyda, “High-quality Polycrystalline Silicon Thin Film Prepared by a Solid Phase Crystallization Method,” Journal of Non-Crystalline Solids, Vol. 198-200, pp. 940-944, 1996.
17.Hiroyuki Kuriyama, and Takashi Kuwahara, “Improving the Uniformity of Poly-Si Films Using a New Excimer Laser Annealing Method for Giant-microelectronics,” Jpn. J. Appl. Phys, Vol. 31, pp. 4550-4554, 1992.
18.Kenji Sera, Fujio Okumura, Hiroyuki Uchida, Shinji Itoh, Setsuo Kaneko, and Kazuaki Hotta, “High-Performance TFT’s Fabricated by XeCl Excimer Laser Annealing of Hydrogenated Amorphous-silicon Film,” IEEE Transactions on Electron Devices, Vol.36, No. 12, pp. 2868-2872, December 1989.
19.王述宜, “準分子雷射加工之應用” 科儀新知, 第十八卷四期, pp. 84-88, 1997.
20.傅永貴, 謝德明, “脈衝雷射在矽單晶上的熱處理” 光訊, 第75期, pp. 18-22, 1998.
21.H. E. Cline, and T. R. Anthony, “Heat Treating and Melting Material with a Scanning Laser or Electron Beam,” Journal of Applied Physics, Vol. 48, No.9, pp. 3895-3900, 1977.
22.S. H. Hsu, S. Chakravorty, and R. Mehrabian, “Rapid Melting and Solidification of a Surface Layer,” Metallurgical Transaction. B, Vol. 9B, pp. 221-229, 1978.
23.S. H. Hsu, S. Kou, and R. Mehrabian, “Rapid Melting and Solidification of a Surface Due to a Stationary Heat Flux,” Metallurgical Transaction. B, Vol. 11B, pp. 29-38, 1980.
24.J. Mazumder, and W. M. Steen, “Heat Transfer Model for CW Laser Material Processing,” Journal. of Applied Physics, Vol. 51, No. 2, pp. 941-947, 1980.
25.J. C. Ion, H. R. Shercliff, and M. F. Ashby, “Diagrams for Laser Materials Processing,” Metall. Mater, Vol. 40, pp. 1539-1551, 1980.
26.Sindo Kou, “Welding Glazing and Heat Treating-A Dimensional Analysis of Heat Flow,” Metallurgical Transaction A, Vol. 13A, pp. 363-371, 1982.
27.Sindo Kou, D. K. Sun, and Y. P. Lee, “A Fundamental Study of Laser Transformation Hardening,” Metallurgical Transaction A, Vol. 14A, p. 643, 1982.
28.Inan Chen, and Sanboh Lee, “Transient Temperature Profile in Solid Heated with Scanning Laser,” J. Appl. Phys., Vol. 54, pp. 1062-1066, 1983.
29.C. Chan, J. Mazumder, and M. M. Chen, “A Two Dimensional Transient Model for Convection in Laser Melted Pool,” Metallurgical Transaction, Vol. 15A, pp. 2175-2184, 1984.
30.Biswajit Basu, and J. Srinivasan, “Numerical Study of Steady-state Laser Melting Problem,” Int. J. Heat Mass Transfer, Vol. 31, pp. 2331-2338, 1988.
31.Andrzej Sluzalec, “Flow of Metal Undergoing Laser Irradiation,” J. Heat Transfer, Vol. 13, pp. 253-263, 1988.
32.P. Barillot, “Numerical Simulation of Crater Formation Heating by Laser Beam,” Numerical Heat Transfer, Part B, Vol. 17, pp. 245-256, 1990.
33.Chrstine Maier, Peter Schaaf, and Ulrich Gonser, “Calculation of the Temperature Profile for Laser Treatment of Metallic Samples,” Material Science and Engineering A, Vol. 150, pp. 271-280, 1992.
34.P. S. Wei, T. H. Wu, and Y. T. Chow, “Investigation of High-Intensity Beam Characteristics on Welding Cavity Shape and Temperature Distribution,” J. of Heat Transfer, Vol. 112, pp. 163-169, 1990.
35.J. C. Chen, and Y. C. Huang, “Thermocapillary Flows of Surface Melting Due to a Moving Heat Flux,” Int. J. Heat Mass Transfer, Vol. 34, pp. 663-671, 1990.
36.劉宏德, “準分子雷射與高分子交互作用時的熱傳與材料割除” 國立成功大學機械工程學系研究所碩士論文, 2000.
37.周瑞淵, “低溫多晶矽薄膜電晶體的製程與模擬” 長庚大學電機工程學系研究所碩士論文, 2000.
38.H. Endert, M. Kauf, D. Basting, “High Power Excimer Laser for Low Temperature Poly-Si Annealing,” SID, San Jose, CA. pp. 18-20, May, 1999.
39.Jonathan A. Dantzig, “Modeling Liquid-Solid Phase Changes with Melt Convection,” International Journal of Numerical Methods in Engineering Vol. 28, No. 8, pp. 1769-1785, August, 1989.
40.王正麟, “砷化鎵單晶成長模式分析” 國立成功大學工程科學系研究所碩士論文,2001.
41.D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Hemisphere, Washington D.C., U.S.A., 1984.
42.H. S. Carslaw, and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed., Oxford at the Clarendon Press, pp. 282-283, 1959.
43.J. S. Hsiao, “An Efficient Algorithm for Finite Difference Analysis of Heat Transfer with Melting and Solidification,” Numerical Heat Transfer, Vol. 8, pp. 653-666, 1985.
44.A. W. Date, “A Strong Enthalpy Formulation for the Stefan Problem,” International Journal of Heat and Mass Transfer, Vol. 34, pp. 2231-2283, 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top