跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳克遜
研究生(外文):Ko-Hsun Wu
論文名稱:多跨距圓柱薄殼之振動分析
論文名稱(外文):Vibration Analysis of Multispan Cylindrical Shell
指導教授:王榮泰
指導教授(外文):Rong-Tyai Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系碩博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:117
中文關鍵詞:多跨距
外文關鍵詞:multispan
相關次數:
  • 被引用被引用:2
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本文主要是使用模態分析法,分析包含剪切變形效應與轉動慣量效應之單跨距及多跨距之圓柱薄殼管之自由振動分析,探討其不同的幾何參數,例如:長度、厚度、跨距數等因素對模態頻率變化的趨勢,並證明模態形狀函數之正交性;此外並研究多跨距之圓柱薄殼管承受隨機負載時的靜定隨機振動(Stationary Random Vibration)分析,以分佈隨機負載的形式為Exponential Cosine的自相關函數(Auto-Correlation Function)下,結構橫向位移變異數隨結構位置變化的趨勢;並且討論多跨距之圓柱薄殼管承受強迫負載的振動分析時,橫向位移隨時間的變化趨勢。
針對單跨距圓柱薄殼之自由振動分析時,薄殼越厚則模態頻率上升,且長度越長,結構物較易發生振動;而以多跨距圓柱薄殼之自由振動分析而言,當周向波數 時,則加強環具有強化結構物的作用;而對多跨距結構承受分佈隨機負載的形式,最大橫向位移變異數發生的位置在跨距的中點;強迫負載的振動分析而言,較重的負載會造成較大的動態位移,亦將會引起多跨距的圓柱薄殼結構較高的模態。
授權書

摘要 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ I
誌謝 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ II
目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥III
表目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥V
圖目錄 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥VII
符號說明 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥XI
第一章 緒論
§1-1 前言 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 1
§1-2 文獻回顧 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 3
§1-3 研究範圍 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 6
第二章 圓柱薄殼管之自由振動分析
§2-1 運動方程式與邊界條件 ‥‥‥‥‥‥‥‥‥‥‥ 9
§2-2 自由振動分析 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥13
§2-3 模態形狀函數之正交性 ‥‥‥‥‥‥‥‥‥‥‥19
§2-4 例題與討論 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 22
第三章 多跨距圓柱薄殼之自由振動分析
§3-1 運動方程式與邊界條件 ‥‥‥‥‥‥‥‥‥‥‥ 36
§3-2 自由振動分析 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥43
§3-3 模態形狀函數之正交性 ‥‥‥‥‥‥‥‥‥‥‥52
§3-4 例題與討論 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 55
第四章 多跨距圓柱薄殼管之動態分析
§4-1 強迫振動 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 74
§4-2 分佈隨機負載 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥76
§4-3 基本形式的自相關函數 ‥‥‥‥‥‥‥‥‥‥‥‥79
§4-4 強迫負載分析 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥81
§4-5 例題與討論 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥82
第五章 總結與建議
§5-1 總結 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥95
§5-2 建議 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥97
參考文獻 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥98
附錄A ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 104
附錄B ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 105
附錄C ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 107
附錄D ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 111
附錄E ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 112
附錄F ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 114
[1] E. E. Sechler, The historical development of shell research and design, Thin-shell Structures, Theory, Experiment and Design, Englewood Cliffs, New Jersey : Prentice-Hall, 1974.
[2] V. Z. Vlasov, Thin-walled Elastic Beams, 2nd edn., National Science Foundation, Washington, D. C., U.S.A., 1961.
[3] R. N. Arnold and G. B. Warburton, Flexural vibrations of the shells of thin cylindrical shells having freely supported ends, Proceedings of the Royal Society of London Series A 197, pp.238-256, 1949.
[4] R. N. Arnold and G. B. Warburton , The flexural vibrations of thin cylinders, Proceedings of the Institution of Aechanical Engineers Series A 167, pp.62-74, 1953.
[5] G. B. Warburton, “ Vibration of thin cylindrical shells ”, Journal of Mechanical Engineering Science 7, pp.399-407, 1965.
[6] S. Timoshenko, Theory of plates and shells, New York : McGraw -Hill, 1940.
[7] W. Flügge, Statik und Dynamik der Schalen, Berlin : Springer -Verlag, 1962.
[8] L. H. Donnell, A discussion of thin shell theory, Proceedings of the 5th International Congress of Applied Mechanics, pp.66-70, 1938.
[9] K. Forsberg, “ Influence of boundary conditions on the modal characteristics of thin shells ”, America Institute of Aeronautics and Astronautics Journal 2, pp.2150-2157, 1964.
[10] K. Forsberg, A review of analytical methods used to determine the modal characteristics of cylindrical shells, Lockheed Missile and Space Company Technical Report No. 6-75-65-25, 1965.
[11] C. L. Dym, “ Some new results for the vibrations of circular cylinders ”, Journal of Sound and Vibration 29, pp.189-205, 1973.
[12] J. L. Sanders, JR., An improved first approximation theory of thin shells, NASA Technical Report R-24, 1959.
[13] A. W. Beissa, Vibration of shells (NASA SP-288), Washington, D.C.:U.S. Government Printing Office, 1973.
[14] C. Ho, Vibrations of circular cylindrical shells, Argonne National Laboratory Report CT-76-9, 1976.
[15] S. Markuš, The Mechanics of Vibrations of Cylindrical shells, Amsterdam : Elsevier, 1988.
[16] C. B. Sharma and D. J. Johns, “ Free vibration of cantilever circular cylindrical shells – a comparative study. ”, Journal of Sound and Vibration 25, pp.433-449, 1972.
[17] C. B. Sharma, “ Calculation of natural frequencies of fixed-free circular cylindrical shells. ”, Journal of Sound and Vibration 35, pp.55-76, 1974.
[18] K. Forsberg, “ Influence of boundary conditions on the madal characteristics of thin cylindrical shells. ” American Institute of Aeronautics and Astronautics Journal 2, pp.2150-2157, 1964.
[19] K. Forsberg, “ Axisymmetric and beam-type vibration of thin cylindrical shells. ”, American Institute of Aeronautics and Astronautics Journal 7, pp.221-227, 1969.
[20] K. Forsberg, “ A review of analytical methods used to determine the modal characteristics of cylindrical shells. ”, NASA CR-613, 1965.
[21] G. B. Warburton and J. Higgs, “ Natural frequencies of thin cantilever cylindrical shells. ”, Journal of Sound and Vibration 11, pp.335-338, 1970.
[22] R. L. Goldman, “ Mode shape and frequencies of clamped -clamped cylindrical shells. ”, American Institute of Aeronautics and Astronautics Journal 12, pp.1755-1756, 1974.
[23] H. Chung, A general method of solution for vibrations of cylindrical shells, Ph. D. Thesis, Tufts University, 1974.
[24] R. Greif and H. Chung, “ Vibrations of constrained cylindrical shells. ”, American Institute of Aeronautics and Astronautics Journal 13, pp.1190-1198, 1975.
[25] Gallety, G. D., “ On the In-Vacuo Vibrations of Simply Supported, Ring Stiffened Cylindrical Shells ”, Proceedings of the 2nd U. S. National Congress of Applied Mechanics, pp.225-231, 1955.
[26] Hu, W. C. L., and Wah, T., “ Vibrations of Ring Stiffened Cylindrical Shells-An ‘Exact’ Method ”, Southwest Research Institute Technical Report, Oct, 1996.
[27] Weinggarten, V. I., “ Free Vibrations of Ring-Stiffened Conical Shells ”, AIAA Journal, Vol.3, No. 8, pp.1475-1481, 1965.
[28] Mikulas, M. M., Jr., and McElman, J. A., “ On Free Vibrations of Eccentrically Stiffened Cylindrical Shells and Flat Plates ”, NASA TN-D-3010, 1965.
[29] Blocka, B. “ Free vibrations of thin, elastic orthogonally stiffened shells of revolution with stiffeners treated as discrete elements ”, Rozprawy Inzynierskie, 37, pp.65-85, 1989
[30] A. M. J. Al-Majafi and G. B. Warburton, “ Free vibration of ring-stiffened cylindrical shells ” , Journal of Sound and Vibration 13, pp.9-25, 1970.
[31] Bardell, N. S., and Mead, D. J., “ Free vibration of an orthogonally stiffened cylindrical shell. Part II : discrete general stiffeners ”, Journal of Sound and Vibration 134, pp.55-72, 1989.
[32] Jiang, J., and Olson, M. D. “ Vibration analysis of orthogonally stiffened cylindrical shell using super finite elements ”, Journal of Sound and Vibration 113, pp.317-327, 1987.
[33] Chung, H., “ Free vibration analysis of circular cylindrical shells ”, Journal of Sound and Vibration 74(3), pp.331-350, 1981.
[34] H. H. Bleich, “ Approximate determination of the frequencies of ring stiffened cylindrical shells ”, Österreichisches Ingenieur -Archiv 15, pp.1-4, 1961.
[35] M. L. Baron, “ Circular symmetric vibrationsof infinitely long cylindrical shells with equidistant stiffeners ”, Journal of applied Mechanics 23, pp.316-318, 1958.
[36] T. Wah and L. R. Calcote, Structure Analysis by Finite Difference Calculus, New York : Van Nostrand Reinhold Co, 1970.
[37] I. D. Wilken and W. Soedel, “ The receptance method applied to ring-stiffened cylindrical shells :analysis of modal characteristics.” Journal of Sound and Vibration 44, pp.563-576, 1976.
[38] I. D. Wilken and W. Soedel, “ Simplified prediction of modal characteristics of ring-stiffened cylindrical shells. ”, Journal of Sound and Vibration 44, pp.577-589, 1976.
[39] K. Forsberg, Exact solution for natural frequencies of a ring-stiffened cylinders, AIAA/ASME 10th Structures, Structural Dynamics and Materials Conference, ASME Volume on Structures and Materials, pp.18-30, 1969.
[40] D. E. Beskos and J. B. Oates, “ Dynamic analysis of ring-stiffened circular cylindrical shells ”, Journal of Sound and Vibration 75, pp.1-15, 1981.
[41] Crandall, S. H. and Yildiz, Asim, “ Random vibration of beams ”, Journal of applied Mechanics 29, pp.267-275, 1962.
[42] V. V. Bolotin, Statistical methods in engineering mechanics, Moscow, Strojizdat, 1965.
[43] J. D.Robson, An introduction to random vibration, Edinburgh, Edinburgh University Press and Elsevier publishing Co. Amsterdam, London, New York, 1964.
[44] J. K. Knowles, “ On the dynamic response of a beam to a random moving load ”, Journal of applied Mechanics, Vol.35, No.1, pp1-6, 1964.
[45] J. K. Knowles, “ A note on the response of a beam to a random moving force ”, Journal of applied Mechanics, Transaction ASME, Vol.37, No.4, pp1192-1194, 1970.
[46] L. Fry’ba, “ Non-stationary vibrations of a beam to a moving random force ” , Journal of Sound and Vibration, Vol.46, No.3, pp.323-338, 1977.
[47] Sieniawska, R. and Sniady, P., “ First passage problem of the beam under a random stream of moving forces ”, Journal of Sound and Vibration 136, pp.177-185, 1990.
[48] Yoshimura, T., Hino, J. and Kamata, T., “ Random vibration of non-linear beam subjected to a moving load ”, Journal of Sound and Vibration 122, pp.317-329, 1988.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top