跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李宗哲
研究生(外文):Zong-Zhe Lee
論文名稱:退化狀態下生產時間與備用元件最佳策略之研究
論文名稱(外文):Joint Determination of the ProductionRun time and the Optimal Number ofStandby Components in DeterioratingProduction Processes
指導教授:謝中奇謝中奇引用關係
指導教授(外文):Chung-Chi Hsieh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工業管理科學系碩博士班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:43
外文關鍵詞:EMQdeteriorationstandby
相關次數:
  • 被引用被引用:0
  • 點閱點閱:414
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
In the classical EMQ model, all items are assumed to be of perfect quality. Because
this assumption is not practical in real production systems, recent studies focus
on deteriorating production systems, in which defective items are incurred. In the
past EMQ models, they have considered inspection intervals, maintenance strategies,
machine breakdown and etc. respectively or jointly. In this study, we develop four
EMQ models for a deteriorating standby production system consisting of a core production
station with a key production component, a repair shop and a set of standby
components. The key production component will shift from an in-control state to an
out-of-control state during the production run, and some percentage of the items produced
is defective. The deteriorating component will then be replaced by a standby
component, if available; and if the replacement is made, all the items produced are
of perfect quality until next deterioration occurs. Four EMQ models both with nonrepairable
components and with repairable components are discussed. Our objective
is to determine the optimal production cycle time and the optimal number of standby
components for each EMQ model by minimizing the annual cost. Finally, numerical
examples are provided to illustrate the optimal policies for these four EMQ models.
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
CHAPTER
I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
II. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 C lassical EMQModel . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Extended EMQModels . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 The EMQ Model with Imperfect Production Processes 7
2.2.2 EMQModels with Inspection Schedules . . . . . . . . 9
2.2.3 EMQModels withMaintenance . . . . . . . . . . . . 12
2.3 The Standby System . . . . . . . . . . . . . . . . . . . . . . . . 13
III. EMQ MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 EMQModels with Non-repairable C omponents . . . . . . . . . 18
3.1.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3 Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 EMQModel with Repairable C omponents . . . . . . . . . . . . 25
3.2.1 Model 4 . . . . . . . . . . . . . . . . . . . . . . . . . 26
IV. EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . 32
4.1 Illustrative Example forModel 1 . . . . . . . . . . . . . . . . . 32
4.2 Illustrative Example forModel 2 . . . . . . . . . . . . . . . . . 33
4.3 Illustrative Example forModel 3 . . . . . . . . . . . . . . . . . 36
4.4 Illustrative Example forModel 4 . . . . . . . . . . . . . . . . . 37
V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 40
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Berk, E. and Moinzadeh, K. Analysis of maintenance policies for M machines with
deteriorating performance. IIE Transactions, 32, 433-444, 2000.
Chiang, J. H. and Yuan, J. Optimal maintenance policy for a Markovian system under
periodic inspection. Reliability Engineering and System Safety, 71, 165-172, 2001.
Ciampoli, M. Time dependent reliability of structural systems subject to deterioration.
Computers and Structures, 67, 29-35, 1998.
Groenevelt, H., Pintelon, L. and Seidmann, A. Production lot sizing with machine
breakdowns. Management Science, 38(1), 104-123, 1992.
Hsieh, C. C. and Chiu, K. C. Optimal maintenance policy in a multistate deteriorating
standby system. European Journal of Operational Research, 141(3), 691-700,
2002.
Kim, C. H. and Hong, Y. An extended EMQ model for a failure prone machine with
general lifetime distribution. International Journal of Production Economics, 49,
215-223, 1997.
Kim, C. H. and Hong, Y. An optimal run length in deteriorating production processes.
International Journal of Production Economics, 58, 183-189, 1999.
Lee, H. L. and Rosenblatt, M. J. Simultaneous determination of production cycle
and inspection schedules in a production system. Management Science, 33(9),
1125-1136, 1987.
Lee, H. L. and Rosenblatt, M. J. A production and maintenance planning model with
restoration cost dependent on detection delay. IIE Transactions, 21(4), 368-375,
1989.
Lee, J. S. and Park, K. S. Joint determination of production cycle and inspection intervals
in a deteriorating production system. Journal of the Operational Research
Society, 42(9), 775-783, 1991.
Lin, C., Madu, C. N., Chien, T. W. and Kuei, C. H. Queueing models for optimizing
system availability of a exible manufacturing system. Journal of the Operational
Research Society, 45(10), 1141-1155, 1994.
Liou, M. J., Tseng, S. T. and Lin, T. M. The eects of inspection errors to the imperfect
EMQ model. IIE Transactions, 26(2), 42-51, 1994.
Makis, V. Optimal lot sizing and inspection policy for an EMQ model with imperfect
inspections. Naval Research Logistics, 45, 165-187, 1998.
Makis, V. and Fung, J. An EMQ model with inspections and random machine failures.
Journal of the Operational Research Society, 49, 66-76, 1998.
Porteus, E. L. The impact of inspection delay on process and inspection lot sizing.
Management Science, 36(8), 999-1007, 1990.
Rosenblatt, M. J. and Lee, H. L. Economic production cycles with imperfect production
processes. IIE Transactions, 18(1), 48-55, 1986.
Ross, S. M. Introduction to Probability Models, 6th ed. Academic Press, 1997.
Shanthikumar, J. G. and Yao, D. D. Optimal server allocation in a system of multiserver
stations. Management Science, 33(9), 1173-1180, 1987.
Tseng, S. T., Yeh, R. H. and Ho,W. T. Imperfect maintenance policies for deteriorating
production systems. International Journal of Production Economics, 55, 191-201,
1998.
Wang, C. H. and Sheu, S. H. Fast approach to the optimal Production/PM policy.
Computers and Mathematics with Applications, 40, 1297-1314, 2000.
Wang, C. H. and Sheu, S. H. Simultaneous determination of the optimal productioninventory
and product inspection policies for a deteriorating production system.
Computers and Operations Research, 28, 1093-1110, 2001.
Wang, K. H. and Kuo, C. C. Cost and probabilistic analysis of series system with
mixed standby components. Applied Mathematical Modelling, 24, 957-967, 2000.
Zeng, A. Z. and Zhang, T. A queueing model for designing an optimal three-dimensional
maintenance oat system. Computers and Operations Research, 24(1), 85-95,
1997.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top