|
1. 閻植林、邱菀華、陳志強(1997),「管理系統有序度評價的熵模型」,系統工程理論與實踐,第17卷,第6期,頁45-48。 2. 李羽彬(1994),「熵-信息理論與系統工程方法論的有效性分析」,系統工程理論與實踐,第14卷,第2期,頁37-42。 3. Al-Sultan, K. S.(1995), “A Tabu Search Approach to The Clustering Problem,” Pattern Recognition, 28(9), pp.1443-1451. 4. Al-Sultan, K. S. and M. M. Khan(1996), “Computational Experience on Four Algorithms for The Hard Clustering Problem,” Pattern Recognition Letters, 17, pp.295-308. 5. Anderberg, M. R.(1973), Cluster Analysis for Application, Academic Press, New York. 6. Arabie, P., L. J. Hubert and G.. D. Soete(1996), Clustering and Classification, World Scientific, USA. 7. Chiou, Y. C. and L. W. Lan(2001), “Genetic Clustering Algorithms,” European Journal of Operational Research, 135, pp.413-427. 8. Cooper, R. G.(1990), “Stage-Gate Systems: A New Tool for Managing New Products,” Business Horizons, May-June, pp.44-54. 9. Cooper, R. G.(1996), “Overhauling The New Product Process,” Industrial Marketing Management, 25(6), pp.465-482. 10. Cowgill, M. C. and R. J. Harvey(1999), “A Genetic Algorithm Approach to Cluster Analysis,” Computers and Mathematics with Applications, 37, pp.99-108. 11. Crawford, C. M. and C. Anthony Di Benedetto(2000), New Products Management, McGraw-Hill, USA. 12. Gen, M. and R. Cheng(1997), Genetic Algorithms and Engineering Desigs, A Wiley-Interscience, New York. 13. Gupta, A. K. and D. Wilemon(1988), “The Credibility-Cooperation Connection at The R&D-Marketing Interface,” Journal of Product Innovation Management, 5(1), pp.20-35. 14. Jiang, J. H., J. H. Wang, X. Chu and R. Q. Yu(1997), “Clustering Data Using a Modified Integer Genetic Algorithm,” Analytica Chimica Acta, 354, pp.263-274. 15. Kaufman, L. and P. J. Rousseeuw(1990), Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, New York. 16. Krishna, K. and M. N. Murty(1999), “Genetic K-Means Algorithm,” IEEE Transactions on Systems, Man, and Cybernetic-Part B: Cybernetics, 29(3), pp.433-439. 17. Maulik, U. and S. Bandyopadhyay(2000), “Genetic Algorithm Based Clustering Technique,” Pattern Recognition, 33, pp.1455-1465. 18. Pinter, J. and G. Pesti(1991), “Set Partition by Globally Optimized Cluster Seed Points,” European Journal of Operational Research, 51, pp.127-135. 19. Ralambondrainy, H.(1995), “A Conceptual Version of The K-means Algorithm,” Pattern Recognition Letters, 16, pp.1147-1157. 20. Rao, M. R.(1971), ”Cluster Analysis and Mathematical Programming,” Journal of the American Statistical Association, 66, pp.622-626. 21. Sarkar, M., B. Yegnanarayanan and D. Khemani(1997), “A Clustering Algorithm Using an Evolutionary Programming-Based Approach,” Pattern Recognition Letters, 18, pp.975-986. 22. Selim, S. Z. and K. Alsultan(1991), “A Simulated Annealing Algorithm for The Clustering Problem,” Pattern Recognition, 24(10), pp.1003-1008. 23. Song, X. M., R. J. Thieme and J. Xie(1998), ”The Impact of Cross-Functional Joint Involvement Across Product Development Stages: An Exploratory Study,” Journal of Product Innovation Management, 15, pp.289-303. 24. Sounder, W. E., J. D. Sherman and R. D. Cooper(1998), “Environmental Uncertainty, Organizational Integration, and New Product Development Effectiveness: A Test of Contingence Theory,” Journal of Product Innovation Management, 15, pp.520-533. 25. Trick, M. A.(1992), “A Linear Relaxation Heuristic for The Generalized Assignment Problem,” Naval Research Logistic, 39, pp.137-152. 26. Tseng, L. Y. and S. B. Yang(2000), “A Genetic Clustering Algorithm for Data with Non-Spherical-Shape Clusters,” Pattern Recognition, 33, pp.1251-1259. 27. Welch, J. W.(1982), “Algorithmic Complexity: Three NP-hard Problems in Computational Statistics,” Journal of Statistical Computation and Simulation, 15, pp.17-25.
|