跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳逸信
研究生(外文):Yi-Hsin Chen
論文名稱:苯胺共聚物導電高分子之電化學聚合及應用
論文名稱(外文):Electrochemical Synthesis and Applications of Copolymer Consisting of Aniline and Its Derivatives
指導教授:溫添進
指導教授(外文):Ten-Chin Wen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:92
中文關鍵詞:導電高分子二苯胺胺基異�婁�苯胺電化學聚合
外文關鍵詞:diphenylamineelectropolymerizationconducting polymeraminoisoquinolineaniline
相關次數:
  • 被引用被引用:12
  • 點閱點閱:1672
  • 評分評分:
  • 下載下載:439
  • 收藏至我的研究室書目清單書目收藏:2
本研究係探討利用電化學聚合方式合成苯胺共聚物。主要研究重點依不同的共聚物而有所不同,苯胺與5-胺基異�婁惘@聚物注重在共聚合反應、性質及應用於修飾電極之表現;苯胺與苯二胺共聚物則注重在不同pH值下的光學性質探討。
最近在導電性高分子領域的研究發展已獲得若干具有實用潛力的材料。這些高分子中以聚苯胺最令人感到興趣,為了能擴大應用的範圍,利用苯胺和苯胺衍生物共聚合的改質方式同樣也獲得相當的重視,本論文以此方式將苯胺分別和不同的單體胺基異�婁情B苯二胺進行電化學共聚合形成共聚物,對共聚物的電化學行為與性質加以探討。
在苯胺與5-胺基異�婁惘@聚物這部分,我們使用了5-胺基異�婁�(5-aminoisoquinoline, AIQ)這種同時擁有-NH2和-C=N-C結構的雙官能基單體,在電化學共聚合時,高分子的形成會從AIQ結構中的-NH2官能基失去電子變成自由基再去攻擊下一個單體,以此類推逐漸形成高分子。利用循環伏安法可比較共聚物、聚苯胺(polyaniline, PANI) 及PAIQ不同的電化學特性,在化學分析電子光譜中,元素分析的結果證明了共聚物的結構較偏向於還原態的形式,同時利用化學分析電子光譜和即時光譜電化學的結果也證實了�婁接硎c中C=N-C官能基的存在進而證明AIQ單體能夠參與共聚合反應。利用定電位電量測定法和HQ/BQ的電子轉移反應來測量將共聚物鍍於白金電極上作為修飾電極之擴散特性及反應性,發現共聚物的電化學活性相較於聚苯胺是比較不活潑的,但是它依舊擁有擴散的特性足以在其表面發生電子轉移反應。
在苯胺與二苯胺共聚物這部分,我們使用聚二苯胺(Diphenylamine, DPA)這種單體與苯胺共聚合來調整PANI在感測pH值時的pKa。結果發現PANI、PDPA及共聚物的紫外光/可見光光譜在不同的pH值會改變其結構而展現不同的光譜特性,而共聚物顯示的光譜特性較接近於PDPA而與PANI較不相同,共聚物在pH值從2.15升高至3.40時,圖譜上即可觀察到波段的消長情形,因此可得知共聚物的感測範圍是在酸性環境下,與聚苯胺的感測範圍有明顯的不同。
Aniline copolymer using electrochemical synthesis is studied in this dissertation. Emphasis is different according to different copolymer with unlike comonoer. The copolymer consisting of aniline and 5-aminoisoquinoline is emphasis upon the copolymerization process, properties of the resulting polymer and the application for modified electrode. The copolymer consisting of aniline and diphenylamine is emphasis upon the spectral characteristics in different pH conditions.
Recent developments in the field of conducting polymer have led to a variety of materials with great potentials for applications. Among these polymers, polyaniline (PANI) is one of the most interesting materials. In order to obtain improved properties for PANI for wider applications, several approaches like copolymerization of aniline and its derivatives are also been emphasized. Keeping this view, the objective of this dissertation puts emphasis on the electrochemical characteristics and properties of conducting copolymer based on aniline with 5-aminoisoquinoline and diphenylamine, separatively.
5-aminoisoquinoline (AIQ), a bifunctional monomer, having an aniline type –NH2 group and a –C=N-C group in quinoline ring, was specifically electropolymerized utilizing the –NH2 groups to leave the –C=N-C groups in the ring intact in the resulted polymer. Electrochemical characteristics for the polymerization of mixture of aniline (ANI) and AIQ was investigated via cyclic voltammetry. Individual electrochemical homopolymerization studies for ANI and AIQ were also performed to deduce the changes in the electrochemical characteristics during polymerization with ANI and AIQ together. X-ray photoelectron spectroscopy (XPS) was employed to find the elemental composition and proportion of reduced units in the copolymer. The presence of –C=N-C groups in the copolymer is evident from XPS and insitu spectra electrochemical results. Double potential chronocoulometry was used to obtain the diffusion characteristics of the copolymer film modified electrode. Oxidation of hydroquinone was performed on the copolymer film modified electrode. We could find that though the electroactivity of copolymer film is less active than one of PANI, the copolymer film still shows diffusion characteristics which make the electron transfer reaction possible on copolymer modified electrode.
Diphenylamine (DPA), was used to tune the pKa of the films of PANI in pH sensing. The films of PANI, poly(diphenylamine) (PDPA) and the copolymer of ANI and DPA were coated on ITO coated glass plate and kept at different pH conditions to observe the changes in UV-Visible spectral characteristics. These films behave differently towards pH variations because of their different structure. The spectral characteristics of copolymer were similar to ones of PDPA. Upon increasing the pH from 2.15 to 3.40, UV-Visible spectrum of copolymer shows the distinct changes in peak positions and absorbance. As a result, we could understand that the sensing range of copolymer is under the more acid medium and different form PANI.
中文摘要……………………………………………………Ⅰ
英文摘要……………………………………………………Ⅲ
致 謝………………………………………………………Ⅴ
目 錄………………………………………………………Ⅵ
圖目錄………………………………………………………Ⅷ
表目錄……………………………………………………ⅩⅡ
第一章 緒論………………………………………………01
1-1 前言…………………………………………………01
1-2 導電性高分子………………………………………01
1-2-1 起源………………………………………01
1-2-2 電化學合成………………………………04
1-3 聚苯胺………………………………………………09
1-3-1 起源………………………………………09
1-3-2 結構與聚合機構…………………………10
1-3-3 電化學聚合動力…………………………14
1-3-4 電化學行為………………………………14
1-3-5 應用………………………………………19
1-4 苯胺共聚物…………………………………………26
1-4-1 共聚合反應………………………………26
1-4-2 應用………………………………………26
1-5 研究動機與大綱……………………………………27
1-5-1 研究動機…………………………………27
1-5-2 大綱………………………………………27
第二章 苯胺與胺基異�婁惘@聚物………………………28
2-1 前言…………………………………………………28
2-2 研究動機……………………………………………29
2-3 實驗部分……………………………………………30
2-3-1 藥品………………………………………30
2-3-2 電化學聚合………………………………30
2-3-3 化學分析電子光譜………………………32
2-3-4 紫外光/可見光光譜……………….……32
2-3-5 定電位電量測定法………………………32
2-3-6 HQ/BQ氧化還原反應……………….……33
2-4 結果與討論…………………………………………33
2-4-1 循環伏安曲線……………………………33
2-4-2 化學分析電子光譜………………………43
2-4-3 紫外光/可見光光譜……………...……47
2-4-4 電化學活性探討…………………………49
2-4-5 電子轉移反應探討………………………54
2-5 結論…………………………………………………55
第三章 苯胺與二苯胺共聚物……………………………56
3-1 前言…………………………………………………56
3-2 研究動機……………………………………………57
3-3 實驗部分……………………………………………57
3-3-1 藥品…………………………………………57
3-3-2 電化學聚合…………………………………58
3-3-3 緩衝溶液配製………………………………58
3-3-4 紫外光/可見光光譜……………………...58
3-4 結果與討論…………………………………………59
3-4-1 紫外光/可見光光譜……………………...59
3-4-2 pH效應…………………………………....62
3-5 結論…………………………………………………70
第四章 總結與建議………………………………………71
4-1 總結…………………………………………………71
4-2 未來工作建議………………………………………72
參考文獻……………………………………………………73
1. A. F. Diaz, J. A. Logan, J. Electroanal. Chem. 111, 111 (1980)
2. R. DeSurville, M. Jozefowicz, L. Yu, J. Perichon, R. Buvet, Electrochim. Acta. 13, 1451 (1968)
3. J. Yue, A. J. Epstein, Macromolecules 24, 4449 (1991)
4. M. Lapkowski, E. M. Genies, J. Electroanal. Chem. 279, 157 (1990)
5. H. Yoon, B. S. Jung, H. Lee, Synth. Met. 41, 699 (1991)
6. A. Bhattacharga, A. De, S. N. Bhattacharga, Synth. Met. 65, 35 (1994)
7. H. Yamato, W. Wernet, M. Ohwa, B. Rotinger, Synth. Met. 55, 3550 (1993)
8. J. Roncali, J. Chem. Rev. 92, 711 (1992)
9. S. Hotta, M. Soga, N. Sonoda, Synth. Met. 24, 233 (1988)
10. F. Garnier, G. Tourillon, M. Gazard, J. C. Dubois, J. Electroanal. Chem. 148, 299 (1983)
11. M. Satoh, K. Kaneto, K. Yoshino, J. Chem. Soc. 1629-1630 (1984)
12. M. Kobayashi, N. Colaneri, M. Boysel, F. Wudl, A. J. Heeger, J. Chem. Phys. 82, 5717 (1985)
13. J. R. Ellis in T. A. Skotheim (cd.), Handbook of conducting polymer, Vol. 1, Marcel Dekker, New York, (1986)
14. G. Boara, M. Sparpaglione, Synth. Met. 72, 135 (1995)
15. G. Harsányi, Polymer Films in Sensor Applications, Chap 3, p 209, Technomic Publishing Company (1995)
16. A. Berin, Electrical, optical polymer systems, 47 (1998)
17. J. Preiza, I. Lundstrom, T. Skotheim, J. Electrochem. Soc. 129, 1685 (1982)
18. A. Malinauskas, R. Holze, Electrochim. Acta. 44, 2613 (1999)
19. D. M. Mohilner, R. N. Adams, W. J. Argersinger, J. Am. Chem. Soc. 84, 3618 (1962)
20. J. Bacon, R. N. Adams, J. Am. Chem. Soc. 90, 6596 (1968)
21. R. A. Cox, E. Buncel, in The Chemistry of Hydrazo, Azo and Azoxy Groups, S. Patel Ed., Wiley, New York, Part 2, P 775 (1975)
22. E. M. Genies, M. Lapkowski, J. Electroanal. Chem. 236, 199 (1987)
23. A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. Wu, S. I. Yaniger, Mol. Liqu. Cryst. 121, 173 (1985)
24. T. Hjertberg, W. R. Salanek, I. Lundstrom, N. L. D. Somasiri, A. G. MacDiarmid, J. Polym. Sci., Polym. Lett. 23, 503 (1985)
25. A. Kitani, K. Sasaki, J. Yano, J. Electroanal. Chem. 209, 227 (1986)
26. U. Konig, J. W. Schultze, J. Electroanal. Chem. 242, 243 (1988)
27. Y. Wei, Y. Sun, X. Tang, J. Phys. Chem. 93, 4878 (1989)
28. W. W. Focke, C. E. Wnek, Y. Wei, J. Phys. Chem. 91, 5813 (1987)
29. M. E. G. Lyons, Electroactive Polymer Electrochemistry, Chap 5, p 241, Plenum Press, New York (1994)
30. M. E. G. Lyons, Electroactive Polymer Electrochemistry, Chap 5, p 333, Plenum Press, New York (1994)
31. J. Przyluski, Solid State Phenomena, Focus Conducting Polymers Electrochemistry, Vol. 13&14, p 975 (1991)
32. S. Dogan, U. Akbulut, T. Yalcin, S. Suzer, L. Toparre, Synth. Met. 60, 27 (1993)
33. G. Harsányi, Polymer Films in Sensor Applications, Chap 3, p 215, Technomic Publishing Company (1995)
34. Y. Ikariyama, W. Heineman, Anal. Chem. 58, 1803 (1986)
35. M. Sato, S. Yamanaka, J. I. Nakaya, K. Hyodo, Electrochim Acta 39, 2159 (1994)
36. J. Y. Lee, C. Q. Cui, J. Electroanal. Chem. 403, 109 (1996)
37. A. A. Karyakin, A. K. Strakhova, A. K. Yatsimirsky, J. Electroanal. Chem. 371, 259 (1994)
38. A. A. Karyakin, I. A. Maltsev, L. V. Lukachova, J. Electroanal. Chem. 402, 217 (1996)
39. D. Kumar, Synth. Met. 114, 369 (2000)
40. S. Ye, N. T. Do, L. H. Dao and A. K. Vijh, Synth. Met. 88, 65 (1997)
41. T.C. Wen, L.M. Huang, A. Gopalan, J. Electrochem. Soc., 148, D9 (2001)
42. J. Heinze, Synth. Met., 41-43, 2805 (1991)
43. C.K. Mann, Electroanal. Chem., 3, 57 (1969)
44. P.N. Bartlett, S.K. Ling Chung, Sensors and Actuators, 20, 287 (1989)
45. D.T. Hao, T.N. Suresh Kumar, R.S. Srinisava, R. Lal, N.S. Punekar, A.Q. Contractor, Anal. Chem., 64, 2645 (1992)
46. F. Fitrilawati, M.O. Tjia, Optical Materials, 16, 361 (2001)
47. M.X. Wan, J.C. Li, Synth. Met., 101, 844 (1999)
48. B.P. Jelle, G. Hagen, Solar Energy Materials and Solar Cells, 58, 277 (1999)
49. C.H. Yang, T.C. Wen, J. Electrochem. Soc., 144, 2078 (1997)
50. C.H. Yang, T.C. Wen, J. Appl. Electrochem., 24, 166 (1994)
51. C.H. Yang, T.C. Wen, J. Electrochem. Soc., 141, 2624 (1994)
52. M.S. Wu, T.C. Wen, A. Gopalan, J. Electrochem. Soc., 148, D65 (2001)
53. W.C. Chen, T.C. Wen, A. Gopalan, J. Electrochem. Soc., (in press)
54. F. Bedioui, M. Voisin, J. Devynck, C. Biedcharreton, J. Electroanal. Chem., 297, 257 (1991)
55. R.W. Murray, Molecular Design of Electrode Surface, Wiley, New York, 1992
56. Y.Q. Xie, F.C. Anson, J. Electroanal. Chem., 349, 325 (1993)
57. B. Lindholm, M. Sharp, J. Electroanal. Chem., 198, 37 (1986)
58. E.T.T. Jones, L.R. Faulkner, J. Electroanal., Chem., 222, 201 (1987)
59. H. Larsson, J. Electroanal. Chem., 365, 229 (1994)
60. T. Skotheim, M.V. Rosenthal, C. A. Linkous, J. Chem. Soc. Chem. Commun., 9, 612 (1985)
61. L.L. Miller, B. Zinger, Q. Zhou, J. Am. Chem. Soc., 109, 2267 (1987)
62. A. Malinauskas, R. Holze, Ber. Bunsen-Ges., Phy. Chem., 100, 1740 (1996)
63. W. Wang, T. Yamaguchi, K. Takahashi, T. Komura, Denki Kagaku, 66, 1032 (1998)
64. M.D. Levi, E.Y. Pisarevskaya, Synth. Met., 55, 1377 (1993)
65. H.A.A. El-Rahman, J.W. Schultze, J. Electroanal. Chem., 416, 67 (1996)
66. N. Oyama, M. Sato, T. Ohsaka, Synth. Met., 29, E501 (1989)
67. M.A. Azzem, U.S. Yousef, D. Limosin, G. Pierre, J. Electroanal. Chem., 417, 163 (1996)
68. L. Marcoux , R.N. Adam, J. Electroanal. Chem., 49, 111 (1974)
69. E.M. Genies, C. Tsintavis, J. Electroanal. Chem., 109, (1985) 109; 220, 67 (1987)
70. H.A.A. Elrahman, T. Ohsaka, F. Kitamura, K. Tokuda, J. Electroanal. Chem., 315, 161 (1991)
71. Y.B. Shim, M.S. Won, S.M. Pant, J. Electrochem. Soc., 137, 538 (1990)
72. G.Jones, Quinolines, Part I, Wiley London, pp5 ,599 (1977)
73. D.E. Stilwell, S.M. Park, J. Electrochem. Soc., 135, 2254 (1988)
74. A.G. Macdiarmid, J.C. Chiang, A.J. Epstein, A.F. Richter, Synth. Met., 18, 285 (1987)
75. H. A. A. Elrahman, H. H. Rehan, J. Appl. Electro. Chem., 23, 827 (1993)
76. T. Ohaska, Y. Ohnuku, N. Oyama, G. Katagiri, G. Pierre, J. Electroanal. Chem., 161, 399 (1984)
77. T. Kobayashi, H. Yoneyama, H. Tamura, J. Electroanal. Chem., 177, 281, 293 (1994)
78. A.J. Bard, L.R. Faulkner, Electrochemical Methods, Foundmentals and Applications, Chap 6, p220, Wiley, New York (1980)
79. A.J. Bard, L.R. Faulkner, Electrochemical Methods, Foundmentals and Applications, Chap 6, p306, Wiley, New York (1980)
80. L.W. Yang, S. Liu, S.J. Rettig, C. Orvig, Inorg. Chem., 34, 4921 (1995)
81. M. J. P. Leiner, O. S. Wolfbeis, pH sensor, in O. S. Wolfbeis (Ed.), Fiber Optoc Chemical Sensors and Biosensors, CRC Press, Boca Raton, FL, Vol. 1, p 359 (1991)
82. J. R. Lakowicz, H. Szmacinski, M. Karakelle, Anal. Chim. Acta 272, 179 (1993)
83. Y. Kostov, S. Tzonkov, L. Yotova, M. Krysteva, Anal. Chim. Acta 280, 15 (1993)
84. D. Callahan, D. S. Ballantine, Talanta 40, 431 (1993)
85. Z. F. Ge, C. W. Brown, L. F. Sun, S. C. Yang, Anal. Chem. 65, 2335 (1993)
86. U. W. Grummt, A. Pron, M. Zagorska, S. Lefrant, Anal. Chim. Acta 357, 253 (1997)
87. M. D. P. T. Sotomayor, M. A. De Paoli, W. A. D. Oliveira, Anal. Chim. Acta 353, 275 (1997)
88. S. De Marcos, O. S. Wolfbeis, Anal. Chim. Acta 334, 149 (1996)
89. A. J. Heeger, P. Smith, Y. Cao, Macromol. Symp. 98, 859 (1995)
90. M. S. Wu, T. C. Wen, A. Gopalan, Mat. Chem. and Phys. 74, 58 (2002)
91. V. Rajendran, A. Gopalan, T. Vasudevan, T. C. Wen, J. Electrochem. Soc., 147, 3014 (2000)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top