跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 22:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施又嘉
研究生(外文):Yu-Chia Shih
論文名稱:雙模式觸媒於重質油加氫脫硫製程的應用設計
論文名稱(外文):Applications of the Bimodal Catalysts in HDS Process
指導教授:江建利
指導教授(外文):Cheng-Li Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:雙模式觸媒加氫脫硫
外文關鍵詞:HDSbimodal catalyst
相關次數:
  • 被引用被引用:1
  • 點閱點閱:463
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:0
摘要

一般對於重質油加氫脫硫的研究,大多僅限於具有均勻活性分佈的單一觸媒孔徑,或是恆溫操作下探討觸媒之脫硫量和最佳起始孔徑。然而對於工業界之應用而言,通常是固定反應器出口的含硫濃度,藉調高反應床溫度來彌補觸媒活性的降低。近年來,雙模式觸媒在重質油加氫脫硫反應床的應用,受到相當的注目。本文嚐試建立雙模式觸媒在重質油加氫脫硫反應床的數學模式,並根據以發表之文獻及工業上較常使用之操作條件,找出一組較具代表性的參數,作為HDS與HDM反應的參考基準,將此定為標準的進料、操作條件(參考附錄B),用此探討反應床操作參數對脫硫與脫金屬的影響。系統參數包括大孔平均孔徑、小孔平均孔徑、大孔所佔的體積分率、Thiele Modulus Φ、重質油的滯留時間、含硫分子出口濃度、上限操作溫度等。由模擬所得的結果,我們發現反應床的脫金屬與脫硫之行為和文獻所發表的實驗數據符合(陳俊宏,1994)。

本研究以大孔平均孔徑和小孔平均孔徑來模擬雙模式觸媒。由結果可以發現,當固定大孔對小孔的孔徑比為3時,隨著大孔所佔的體積分率增加,總脫硫量呈先減後增加的趨勢。當大孔的孔徑固定,隨著觸媒小孔的孔徑增加,總脫硫量隨之增加。脫硫的反應速率越大,會使得雙模式觸媒的起始溫度越低、壽命越長。重質油的流速愈小或提高上限操作溫度,皆可提高反應床的操作壽命。另外,在二段式反應床的配置方面,將較大孔徑的雙模式觸媒配置在上段,可得較佳的總脫硫量。
Abstract

Most of the researches in the hydrodesulfurization (HDS) reaction of the residual oil were focused on a single catalyst pellet with a single pore diameter and uniform activity profile, or on simulating the amounts of desulfurization and the optimal pore diameters under isothermal condition. However, in the industrial applications, the outlet concentration of the sulfur-containing molecules is usually fixed in the HDS process by increasing the temperature of reactor to compensate for the deactivation of catalysts. In recent years, bimodal catalysts are of quite potential in the application of hydrodesulfurization (HDS). In this study, the mathematical model of a fixed bed for HDS of the residual oil with bimodal catalysts was established. A set of representative parameters of HDS and HDM was adopted according to the data from the published papers. These parameters was set as the standard operating condition. System parameters include the ratio of the mesopore diameter to the micropore diameter, the average diameter and the percentage of the mesopore and micropore, Thiele Modulus Φ, the residence time of residual oil in the fixed bed reactor, the outlet concentration of the sulfur-containing molecules, and the upper limiting temperature.
This study uses the average diameter of the mesopore and micropore to simulate the bimodal catalysts. The simulation results show that the amounts of desufurization decrease at first, then increase as the percentage of mesopore increases at the diameter ratio of the mesopore to micropore equals to 3. The amounts of desulfurization increase with the increasing diameter of the micropores for a constant diameter of the mesopores. The faster the rate of desulfurization, the lower the initial temperature of the fixed bed reactor and the longer the age of catalysts. Decreasing the flow rate of residual oil or increasing the upper limiting temperature can prolong the life of catalysts. Furthermore, packing catalysts with larger pores in the upper-stage of reactor will have a better performance on both desulfurization and demetallation in a two-stage reactor.
目錄
圖目錄…………………………………………………………………….I
符號說明……………………………………………………...………VIII
第一章 緒論……………………………………………………………..1
第二章 模式推導與計算方法…………………………………………..7
2.1 單一觸媒小孔內的HDS與HDM反應………………7
2.2 單一觸媒大孔內的HDS與HDM反應…………… 12
2.3 觸媒顆粒的HDS與HDM反應速率…………….…13
2.4 固定床中HDS與HDM反應的模擬………………..13
2.5 非恆溫操作下的模擬………………………………...15
2.6 數值方法………………………………………………17
2.7 非恆溫操作下的最佳孔徑…………………………..18
2.8 二段式反應器設計…………………………….……..19
2.9 標準參數的訂定……………………………………...19
第三章 結果與討論…………………………………………….20
3.1 一段式固定床反應器的模擬………………………..20
3.2 二段式固定床反應器的模擬………………..………26
第四章 結論……………………………………………………..31
4.1 將雙模式觸媒配置在一段式固定床反應器…….…31
4.2 將雙模式觸媒配置在二段式固定床反應器……….32
參考文獻………………………………………………………………..94
附錄A…………………………………………………………………...97
附錄B………………………………………………………………….101
附錄C…………………………………………………………….……102
附錄D…………………………………………………………….……103
參考文獻

1.Absi-Halabi,M., Stanislaus,A. and Trimm,D.L., “Coke Formation on Catalysts During The Hydroprocessing of Heavy Oil”, App. Catal., Vol.72, pp.193-215, 1991
2.Agrawai, R. and Wei, J., “Hydrodemetalation of Nickel and Vanadium-Porphyrins. 1. Intinnsic Kinetics”, Ind. Eng. Chem. Des. Dev., Vol.23, p505-514, 1984.
3.Ahn , B. J. and Smith, J. M., ”Deactivation of Hydrodesulfurization Catalysts by Metals Deposition”, AIChE J. ,Vol.30, No.5, p739-746, 1984.
4.Chang, C. D. and Silvestri, A. J., ”Manganese Nodules as Demetalation Catalysts”, Ind. Eng. Chem. Process Des. Dev., Vol.13, No.3, p315-316, 1974.
5.Chao, Y. C., Liaw, H. J. and Huang , H. P., ”A Mathematical Model for The Catalyst Deactivation in a Commecial Residue Hydrodesulfurization Reactor System”, Chem. Eng. Comm. , Vol.104 , p267-290 , 1991.
6.Do, D. D., “Catalytic Conversion of Large Molecules: Effect of Pore Size nd Concentration”, AIChE J., Vol.30, No.5, p.849-853, 1984.
7.Fleisch, T. H., Meyers, B. L., Hall, J. B. and Ott, G. L., “Multitechnigue Analysis of a Deactivated Resid Demetallation Catalyst”, J. of Catalysis, Vol.86, p.147-157, 1984.
8.Frye,C.G. and Mosby,J.F., “Kinetics of Hydrodesulfurization” Chem. Eng. Pro., Vol.63, No.9, p.66-70, 1967.
9.Gail, E. and Wei, J.,“Computer Simulation of Hydrodemetallation in Fixed-Bed Reactors”, Chem. Eng. Comm., Vol.105, p129, 1991.
10.Hastings, K. E. ,James, L. C., Mounce, W. R.and Cranbury, N. J.“Deme-tallization Cuts Desulfurization Costs”, Oil and Gas J. , p122-130, June 30 , 1975.
11.Hung,C., Howell,R.L. and Johnson,D.R., “Hydrodemetallation Catalysts” ,CEP, p.57-61, March, 1986
12.Limbach,K.W. and Wei,J., “Effect of Nonuniform Activity on Hydrodemetallation Catalyst”, AIChE J., Vol.34, No.2, p.305-313, 1988.
13.L.O. Oyekunle and R. Hughes “Metal Deposition in Residuum Hydrodesulphurisation Catalysis” Chem. Eng. Res. Des., Vol.62, p.339-343, 1984.
14.Mitsunorl Shimura, Yoshimi Shiroto, and Chisato Takeuchi,“Effect of Catalyst Pore Structure on Hydrotreating of Heavy Oil”,Ind. Eng. Chem. Fundam. , 25, p330, 1986.
15.Oleck, S. M. and Sherry, H. S., “Fresh Water Manganese Nodules as a Catalyst for Demetalizing and Desulfurizing Petroleum Residua”, Ind. Eng. Chem. Process Des.Dev., Vol.16, No.4, p525-528, 1977.
16.Onuma, k.,“ Preparation of bimodal alumina and other refractory inorganic oxides-suitable supports for hydrotreating catalysts ”, Preparation of catalysts Ⅳ, p543-p555, 1987.
17.Oyekunle, L. O. and Hughes, R.,“Catalyst Deactivation during Hydro-demetallization”, Ind. Eng. Chem. Fundam. , Vol.26, No.10, p.1945-1950, 1987.
18.Pazos,J.M., Ganzalez,J.C. and Salazar-Gaillen,A.J., “Effect of Catalyst Properties and Operating Conditions on Hydroprocessing High Metal Feed”, Ind. Eng. Chem. Process Des. Develop., Vol.22, p.653-659, 1983.
19.Rajagopalan, K. and Luss, D., “Influence of Catalyst Pore Size on Demetallation Rate” ,Ind. Eng. Chem. Process. Des. Develop., Vol.18 , No.3 , pp.459-465 , 1979
20.Ruckenstein,E. and Tsai,M.C., ”Optimum Pore Size for the Catalyst Conversion of Large Molecules” ,AIChE J.,Vol.27 , No.4 , p.697-699 , 1981.
21.Schuit,G.C.A.and Gates,B.C.,“Chemistry and Engineering of Catalytic Hydrodesulfurization”, AIChE J. ,Vol.19, No.3, p417-436, 1973.
22.Speight, J. G., Marcet Dekker Inc., “The Desulfurization of Heavy Oil and Residua” 1981.
23.Spry, J. C. and Sawyer, W. H., AIChE 68th Annual Meeting,p16-20, Losan-geles , Ca. , Nov.,1975.
24.Tamm,P.W., Harnsberger,H.F. and Bridge,A.G., “Effect of Feed Metal on Catalyst Aging in Hydroprocessing Residuum”, Ind. Eng. Chem. Process Des. Dev., Vol.20, p.262-273, 1981.
25.Tadao Ohtsuka “Catalyst for Hydrodesulfurization of Petroleum Residua” Catal. Rev.-Sci. Eng., 16, p.291-322, 1977.
26.Ternan, M., “Product Fractions Obtained by Hydrocracking Vacuum Residue from Athabasca Bitumen Using Bimodal Catalysts of Varying Macropore Volume”, Energy & Fuels, Vol. 12, p.239-247., 1998
27.Van Zijll Langhout, W. C., Quwerkerk, O. and Prank, K.M.A.,“New Process Hydrotreats Metal-Rich Feedstocks”, Oil and Gas J., p120-126, Dec.1, 1980.
28.Ware, R. A. and Wei, J. , “Catalystic Hydrodemetallation of Nickel Porphyrins”, J. of Catal. ,93, p.100-121, 1985.
29.黃德湧,劉丕憲,“重質油加氫脫硫製程電腦模擬研究”,中油公司煉研中心報告,1984。
30.黃正雄,”真空製氣油與燃料油的加氫脫硫”,石油,第13卷,第2期,p.18-26,民國66年6月。
31.經濟部73年度研究發展專題:”本廠觸媒性能評價系統研究加氫脫硫觸媒性能評估”,經濟部印。
32.林宗榮、周澤川,”重油加氫脫硫鈷鉬觸媒製備孔隙分佈與擴散反應之研究”,國立成功大學碩士論文,1985。
33.蔡長城、周澤川,”重油加氫脫硫觸媒的載體制備-孔隙分佈的控制與分析”,國立成功大學碩士論文,1987。
34.葉春育、江建利,”重質油加氫脫硫觸媒的最佳孔徑與活性分佈”,國立成功大學碩士論文,1992。
35.許碩麟、江建利,”恆溫操作下重質油加氫脫硫反應床的最佳設計”,國立成功大學碩士論文,1993。
36.陳俊宏、江建利,”重質油加氫脫硫固定床反應器的最適設計”,國立成功大學碩士論文,1994。
37.許東銘、江建利,”雙模式觸媒於重質油加氫脫金屬製程的應用設計”,國立成功大學碩士論文,1992。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top