跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 15:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳信宏
研究生(外文):SHINN-HORNG CHEN
論文名稱:主鏈含孤立發光基團及對四聯苯高分子的合成與光電性質
指導教授:陳雲陳雲引用關係
指導教授(外文):Yun Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:124
中文關鍵詞:高分子發光二極體
外文關鍵詞:PLED
相關次數:
  • 被引用被引用:4
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高分子發光二極體(Polymer Light Emitting Diode, PLED)始於1990年英國劍橋大學Friend等人的研究,發現共軛高分子可做為發光二極體材料,從此開啟了高分子發光二極體的時代。
高分子發光二極體具備了自發光、高應答速度、視角廣、重量輕、可製作大面積等優點,應用於平面顯示器上極具潛力。
在元件的製作,高分子一般僅用來當作發光層(Emission Layer, EML),如在高分子的結構上導入電子、電洞傳遞基團,使發光層結合了電子傳遞層(Electron Transport Layer, ETL)、電洞傳遞層(Hole Transport Layer, HTL)的功能,如此可促進電子和電洞的注入,改善元件的特性。高分子結構上的發光基團若是孤立,可有效控制共軛長度和顏色的純度。
本研究合成主鏈含孤立發光基團的新型高分子,在結構上以含拉電子基的對四聯苯為電子傳遞單位,而發光基團為二苯乙烯衍生物,利用親核性取代反應合成聚芳香醚高分子。在物理性質方面,高分子P1~P4具有良好的熱穩定性和溶解度。在光學性質方面,P1~P4的螢光光譜皆有能量轉移的現象,發光波長是在藍光的範圍內。利用模式化合物(Model Compound)作能量轉移的討論,並比較小分子間和高分子能量轉移的差異。在電化學性質方面,利用氧化和還原起始電位分別求出高分子HOMO和LUMO能階,其中P1~P4的HOMO能階在-5.15 eV~ -5.25 eV間;LUMO能階在-3.36 eV~-3.40 eV之間。若將P2摻混於P1中(P1發藍光,P2發綠光),透過能量不完全轉移,可得到發光波長涵蓋了400 nm∼600 nm的範圍,應用於摻混元件的製作上,可得到發綠光或白光的元件。
Since the discovery of electroluminescene(EL) in the poly(1,4-phenylenevinylene) (PPV) in 1990, EL conjugated polymers have attracted much interest in recent years because of their potential application in large-area flat panel displays.
Four novel poly(aryl ether)s (P1~P4) consisting of alternate isolated electron-transporting(quaterphenyl) and hole-transporting fluorophores (carbazole, fluorene)have been synthesized and characterized. These poly(aryl ether)s can be dissolved in organic solvents, and exhibited good thermal stability with 5% weight loss temperature above 500℃ in nitrogen atmosphere. The photoluminescent (PL) spectra of films of these polymers show maximum peaks at around 442-452 nm. The emission of the polymers was dominated by the fluorophores with longer emissive wavelength,3,6-bis(styryl)carbazole, 2,7-bis(styryl)fluorene segments via energy transfer from p-quaterphenyl. Therefore, the p-quaterphenyl segments function only as the electron-transporting/hole-blocking units in these polymers, and the other segments are the emissive centers and the hole-transporting units. The HOMO and LUMO levels of these polymers have been measured by cyclic voltammetry. The electron-donating nitrogen atom on carbazole resulted in the higher HOMO energy levels of P1 and P2. The single-layer light-emitting diodes of Al/P1~P4/ITO glass were fabricatedand their optoelectronic properties investigated. P1, P2 and P4 revealed blue electroluminescence, whereas P3 emitted yellow light due to the excimer formation. Moreover, blend of P1 and P2(a green-light polymer) emitted green light via completely energy transfer and white light via incomplete energy transfer.
中文摘要…………………………………………………………….…...Ⅰ
英文摘要…………………………………………………………….…...Ⅱ
誌 謝…………………………....……………………………….…….Ⅲ
目 錄………………………….......…………………………….…….Ⅳ
流程目錄…………………………...….……………………………….. Ⅶ
表目錄…………………………………………………………………... Ⅷ
圖目錄…………………………………………………………………...Ⅸ
第一章 緒論
1-1簡介……….……………………........……………………....……1
1-2發光原理與元件結構………………………............................2
1-2-1發光原理...............……..............……......…………...…....2
1-2-2元件結構.....................….….............................................3
1-2-3發光效率.....................….………….........…………...……….4
1-3 PLED元件技術的演進...................................……………..5
1-4有機發光二極體未來研究方向......……………….…………..8
1-5研究動機...............................................………………9
第二章 文獻回顧
2-1有機發光二極體分子的設計….….……….…………….....10
2-1-1構形與分子軌域的重疊…......….…………………........10
2-1-2電光轉換效率….….………………........................…11
2-1-3高分子有機電致發光材料….…………………............12
2-2芴、□□分子…...…………………..........…………......13
2-3螢光理論….......……….......………………………………14
2-3-1螢光的成因.....…………........…………….……………14
2-3-2影響螢光的因素....………...........…..…………………16
2-4螢光的能量轉移....…………….….........…………………17
2-4-1原理..........…………….........………………...…........…17
2-4-2 Ro(Förster Distance)的計算..….........……………………18
2-5光顏色...................................................………………20
第三章 實驗部份
3-1實驗裝置與設備……………….…..........…………..……24
3-2鑑定儀器…………………….……….......………………24
3-3物性及光電特性測量儀器………………....………….....26
3-4藥品……………………………………….........…..………33
3-5合成步驟與結果………………………………........…........35
3-5-1□□單體10的合成……………………….................35
3-5-2芴單體11的合成…...………………….........................37
3-5-3雙氟單體18、19的合成….......................……………38
3-5-4高分子P1~P4的合成…....……..................……………39
3-6合成反應原理……………….…………….…................…41
3-6-1有機金屬觸媒…............……................……………….…41
3-6-2 Heck Reaction....................................…………………41
3-6-3有機硼試劑…...………………....................…………….42
3-6-4聚芳香醚的合成…………………...................................43
第四章 結果與討論
4-1單體之合成與鑑定…………………………….…………….44
4-2高分子結構之鑑定……………………………..…………....46
4-3高分子分子量的測定…………………………….……………47
4-4溶解度測試…................………....…………….……………47
4-5熱性質分析…...........……………………….....……………48
4-5-1熱重分析………………………………...............…………48
4-5-2微差式掃描熱卡計…………………….....……..........….…49
4-6光學性質...................………...........………………….…..…49
4-6-1 UV/Vis 吸收光譜………………..........……………..…...49
4-6-2發光光譜 (Photoluminescence Spectra)….............…...….50
4-6-3相對量子產率(Quantum Yield)………........…………......…52
4-7螢光的能轉移………............………………....………….…..52
4-8電化學性質探討…...........….......…………………….….……55
4-9元件性質與討論................................................……58
4-9-1單層元件性質測試.....................................………58
4-9-2摻混高分子的元件測試....................................………60
第五章 結論………………………………………………………61
參考文獻………………………………………...…………….......104
自述…………………………...…………………………...…..108
流 程 目 錄
(List of Schemes)
Scheme 1 Synthesis of Monomers………………......…...………63
Scheme 2 Synthesis of Polymers……………............……………64
Scheme 3 Model Compounds, PCFCA, and P2.............………65
表目錄
(List of Tables)
Table 1 The Synthetic Results of Monomers and Polymers.…….….66
Table 2 Viscosity and Molecular Weight Characterization of P1~P4..67
Table 3 Solubility of Polymers………………........................….............67
Table 4 The Absorption and Photoluminescence Maxima of P1~P4 in Film or Solution States at Room Temperature....................……68
Table 5 Quantum Yield of Monomers and Polymers in Different Condition........................................................................... ...........68
Table 6 The Absorption and Photoluminescence Maxima of Model Compounds in Solution State at Room Temperature.....…..….....69
Table 7 The Relative Quantum Yield by Defining That of Flu-Et as Unity (excitation by 320 nm)……...........…...............…………………69
Table 8 The R0(Förster distance) Between Model Compounds................69
Table 9 Electrochemical Data for P1~P4 Obtained by Cyclic
Voltammetry.......................................................................70
Table 10 Comparison of The Charge Transport Balance in Polymers........70
 圖目錄
(List of Figures)
第一章 緒論
Fig. 1-1有機發光二極體發光原理………………….............………3
Fig. 1-2PLED單層元件………………............…………………………3
Fig. 1-3 多層元件……………............................…………………4
Fig. 1-4 不同性質之螢光材料…………………………......................7
Fig. 1-5電子、電洞傳遞材料……….......................................................8
第二章 文獻回顧
Fig. 2-1 具螺旋、扭曲結構的基團………...................………….10
Fig. 2-2 剛硬程度不同的分子………………..........………………11
Fig. 2-3 有機電致發光材料之結構分類…......................................……12
Fig. 2-4 芴與□□分子…………………..........................……………13
Fig. 2-5 具低譜隙間帶基團的聚芴………………………....………….14
Fig. 2-6螢光和磷光發光機制…………………...........………….15
Fig. 2-7給予體和受體光譜重疊圖…………….............…………18
Fig. 2-8肉眼對不同波長的辨識圖……...........................……...21
Fig. 2-9 C.I.E. 1931 色度座標……………………............……………22
第三章 實驗部份
Fig. 3-1元件示意圖…………………………………........……...…….33
Fig. 3-2Heck 反應機構………….…………………….......…………42
Fig. 3-3Suzuki反應機構………........……..........................………..43
Fig. 3-4 親核性取代反應機構…………………………….............….43
第四章 結果與討論
Fig. 4-1 1H-NMR Spectrum of 3,6-Dibromo-9-(2-ethylhexyl)carbazole (3)………………....................................................................................71
Fig. 4-2 1H-NMR Spectrum of 3,6-Bis{(4-acetoxylphenyl)vinyl}-9-
(2-ethylhexyl)carbazole (8)..........................................................71
Fig. 4-3 1H-NMR Spectrum of 3,6-Bis{(4-hydrophenyl)vinyl}
9-(2-ethylhexyl)carbazole (10)………........................................72
Fig. 4-4 1H-NMR Spectrum of 2,7-Dibromo-9,9-dihexylfluorene (6).......72
Fig. 4-5 1H-NMR Spectrum of 2,7- Bis{(4-acetoxylphenyl)vinyl}-
9,9-dihexyl-fluorene (9)…………..………………....…...........73
Fig. 4-6 1H-NMR Spectrum of 2,7-Bis{(4-hydrophenyl)vinyl}-
9,9-dihexylfluorene (11).…………………….........................…73
Fig. 4-7 1H-NMR Spectrum of 4,4’-Diphenylbis(trimethylene boronate)
(14)……………………………………......................................74
Fig. 4-8 1H-NMR Spectrum of 4,4’’’-Difluoro-3,3’’’-bis
trifluoromethyl-quaterphenyl (18)………………………….......74
Fig. 4-9 1H-NMR Spectrum of 4,4’’’-Difluoroquaterphenyl-
3,3’’’-dicarbonitrile (19)…........................................................75
Fig. 4-101H-NMR Spectrum of P1……………………....……………....75
Fig. 4-111H-NMR Spectrum of P2………………………......……..……76
Fig. 4-121H-NMR Spectrum of P3………………………...…....……….76
Fig. 4-131H-NMR Spectrum of P4…………………....…...…………….77
Fig. 4-14 FT-IR Spectra of 3,6-Bis{(4-acetoxylphenyl)vinyl}
9-(2-ethylhexyl)carbazole (8).…………...............................….77
Fig. 4-15 FT-IR Spectra of 3,6-Bis{(4-hydrophenyl)vinyl}-9-
(2-ethylhexyl)carbazole (10)……...........................…………78
Fig. 4-16FT-IR Spectra of 2,7-Dibromo-9,9-dihexylfluorene (6).……....78
Fig. 4-17 FT-IR Spectra of 2,7- Bis{(4-acetoxylphenyl)vinyl}
9,9-dihexylfluorene (9)….…….……………...............……….79
Fig. 4-18 FT-IR Spectra of Bis{(4-hydrophenyl)vinyl}
9,9-dihexylfluorene (11)….....................……………………79
Fig. 4-19 FT-IR Spectra of 4,4’’’-Difluoroquaterphenyl
3,3’’’-dicarbonitrile (19)………………………………............80
Fig. 4-20 FT-IR Spectra of 4,4’’’-Difluoro3,3’’’-bistrifluoromethyl
quaterphenyl (18)……………...........................……………….80
Fig. 4-21FT-IR Spectra of P1………….........................…….………..….81
Fig. 4-22FT-IR Spectra of P2……………………………......……………81
Fig. 4-23FT-IR Spectra of P3…………………………....…..……………82
Fig. 4-24 FT-IR Spectra of P4……….……………………....……………82
Fig. 4-25Thermogravimetric Curves of P1~P4 with a Heating Rate of
20℃/min in Nitrogen….……….......………………………...83
Fig. 4-26Differential Scanning Calorimetric Curves of P1~P4 Obtained
from The Second Scan with Heating Rate of 20℃/min…….....83
Fig. 4-27UV/Vis Absorption Spectra of P1~P4 in Solution State at Room Temperature………..……………………………….…………...84
Fig. 4-28UV/Vis Absorption Spectra of P1~P4 in Film State at Room Temperature……………………………………...…...………...84
Fig. 4-29Photoluminescence Spectra of P1~P4 in Solution State at Room Temperature…………...……………………………...………...85
Fig. 4-30Photoluminescence Spectra of P1~P4 in Film State at Room Temperature…...…………………...…………………………...85
Fig. 4-31Photoluminescence Spectra of P2 in Different Concentration at
Room Temperature………………………………….……….…86
Fig. 4-32Normalized Photoluminescence Spectra of P2 in Different Concentration at Room Temperature…..…........…………….….86
Fig. 4-33Photoluminescence Spectra of P1 and P2 in Film State at Different Temperature……….....…….……..…………………...87
Fig. 4-34Photoluminescence Spectra of P3 and P4 in Film State at Different Temperature…...………………..……….…..………...87
Fig. 4-35UV/Vis Absorption and Photoluminescence Spectra of M1, M2and Cab-Et in Solution State at Room Temperature….....….…..88
Fig. 4-36UV/Vis Absorption and Photoluminescence Spectra of Model Compound Blended in PMMA at Room Temperature….……...88
Fig. 4-37UV/Vis Absorption Spectra of Model Compounds Blended in PMMA at Room Temperature……...…...…………...…...……..89
Fig. 4-38Photoluminescence Spectra of Model Compounds Blended in PMMA Excited By 320 nm at Room Temperature…......…...….89
Fig. 4-39Excitated Spectra of Model Compounds Blended in PMMA.........90
Fig. 4-40Photoluminescence Spectra of P3 And Flu-Et/M2 in Solution
State under Low Concentration at Room Temperature......…......90
Fig. 4-413-D Structure Diagram of P1 Oligmer………..............................91
Fig. 4-423-D Structure Diagram of P2 Oligmer……..................................91
Fig. 4-433-D Structure Diagram of P3 Oligmer……..................................92
Fig. 4-443-D Structure Diagram of P4 Oligmer………..............................92
Fig. 4-45Cyclic Voltammogram of Ferrocene/Ferrocenium in 0.1 M
N-Bu4NClO4 By ITO with Scan Rate of 100 mv/s…...….……....93
Fig. 4-46Cyclic Voltammogram of ITO In 0.1 M N-Bu4NClO4 with
Scan Rate of 100 mv/s………………………...…..….…….…..93
Fig. 4-47Cyclic Voltammogram of P1 in 0.1 M N-Bu4NClO4 on
ITO with Scan Rate of 100 mv/s….....…………..…….….…....94
Fig. 4-48Cyclic Voltammogram of P2 In 0.1 M N-Bu4NClO4 on
ITO with Scan Rate of 100 mv/s…………….......………..…....94
Fig. 4-49Cyclic Voltammogram of P3 in 0.1 M N-Bu4NClO4 on
ITO with Scan Rate of 100 mv/s……………...……………......95
Fig. 4-50Cyclic Voltammogram of P4 in 0.1 M N-Bu4NClO4 On
ITO with Scan Rate of 100 mv/s…………...……………...…...95
Fig. 4-51Energy Level Diagram of P1~P4 and PCFCA from The Cyclic
Voltammogram and UV/Vis absorption spectrum….…..…........96
Fig. 4-52 Chromaticity Coordinate Diagram Of P1~P4 in Solid State at
Room Temperature…....…………………...………….......…......96
Fig. 4-53Current Density (●)-Electric Field-Luminescance(▲) Characteristics of ITO/P1/Al…………………….......................97
Fig. 4-54Current Density (●)-Dlectric Field-Luminescance(▲) Characteristics of ITO/P2/Al…………………...........................97
Fig. 4-55Current Density (●)-Electric Field-Luminescance(▲) Characteristics of ITO/P3/Al…………………….......................98
Fig. 4-56Current Density (●)-Electric Field-Luminescance(▲) Characteristics of ITO/P4/Al……….......................…………....98
Fig. 4-57Current Density -Electric Field Characteristics of
ITO/P1~P4/Al…………………………………………..…….99
Fig. 4-58Intermolecular and Intramolecular Electron Hopping in
Polymers………..………………………………………...99
Fig. 4-59Electroluminescent and Photoluminescence Spectra of P1..…....100
Fig. 4-60Electroluminescent and Photoluminescence Spectra of P2.........100
Fig. 4-61Electroluminescent and Photoluminescence Spectra of P3….....101
Fig. 4-62Electroluminescent and Photoluminescence Spectra of P4….....101
Fig. 4-63UV/Vis Absorption and Photoluminescence Spectra of P1 and
P2 in Film State at Room Temperature……..……………..…..102
Fig. 4-64Photoluminescence Spectra of Blended Polymers in Film State at Room Temperature………………………..…….....….……......102
Fig. 4-65Electroluminescent Spectra of Blended Polymers ....……..…....103
Fig. 4-66Current Density (●)-Electric Field-Luminescance(▲) Characteristics of ITO/Blended Polymers/Al...................….…103
[1] M. Pope , H. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).[2] C. W. Tang , S. A.Vanslyke, Appl. Phys. Lett., 51, 913 (1987).[3] J. H. Burroughes, D. D. C. Bradly, A. R. Brovn, R. N. Morks, K. Mackay, R. H. Friend, P. L. Burmond, A. B. Holmes, Nature, 374, 539 (1990). [4] 翁文國;工業材料雜誌,第156期,P.75,民國88年12月. [5] 翁文國;工業材料雜誌,第162期,P.75,,民國89年6月. [6] 柯崇文, Chemistry, 60, 95 (2002)[7] P. W. M. Blom, M. C. J. M. Vissenberg, Materials Science and Engineering, 27, 53 (2000).[8] J.-S. Kim, K. H. H. Peter, C. E. Murphy, N. Baynes, R. H. Friend, Adv. Mater. , 3, 206 (2002).[9] 陳存仁;工業材料雜誌,第160期,P.95,民國89年4月. [10] Andersson et al, Macromolecules, 28, 7525 (1995).[11] A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angew : Chem. Int. Ed., 37, 402 (1998).[12] J. L. Segura, Acta Polym., 49, 319 (1998).[13] Q. Pei, Y. Yang, J. Am. Chem. Soc., 188, 7416 (1996)..[14] Q. Pei, Y. Yang, J. Appl. Phys., 81, 3294 (1997).[15] Y. Ohmori, M. Uchida, K. Muro, K. Yoshino, Jpn. J. Appl.Phys., 30, L1941 (1991)).[16] K. Yoshida, A. Fujii, Y. Ohmori, K. Yoshino, Appl. Phys.Lett., 69, 734 (1996).[17] M. Grell, X. Long, D. D. C. Bradley, M. Inbasekaran, E. P. Woo, Adv. Mater., 9, 798 (1997).[18] M. Kreyenschmidt, G. Kla¨rner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen, V. Y. Lee, J. C. Scott, R. D. Miller,Macromolecules, 31, 1099 (1998).[19] M. Leclec, J. Polym. Sci., Part A: Polym. Chem., 39, 2867 (2001).[20] D. B. Romero, M. Schaer, M. Leclerc, D. Ad’s, A. Siove, L. Zuppiroli, Synth. Met. , 80, 271 (1996). [21] D. B. Romero, F. Nu¨esch, T. Benazzi, A. Siove, L. Zuppiroli, Adv. Mater., 9, 1158 (1997).[22] S. Maruyama, X. T. Tao, H. Hokari, T. Noh, Y. Zhang, T. Wada, H. Sasabe, H. Suzuki, T. Watanabe, S. Miyata, J. Mater. Chem., 9, 893 (1999). [23] Z. Zhu, J. S. Moore, J. Org. Chem., 65, 116 ( 2000).[24] I. Michael, W. Edmund, W. Weishi, B. Mark, W. Lisa, Synthetic Metals., 111, 397 (2000).[25] D. M. Johansson, M. Theander, T. Granlund,, O. Ingana1, M. R. Andersson, Macromolecules, 34, 1981 (2001).[26] S. O. Djobo, J. C. Berne¡de, S. Marsillac, Synthetic Metals., 122, 131 (2001).[27] Y. Sakuratani, M. Asai, M. Tokita, S. Miyata, Synthetic metals., 123, 207 (2001).[28] C.-W. Ko, Y.-T. Tao, J.-T. Lin, K. R. J. Thomas, Chem. Mater., 14, 357 ( 2002).[29] D. A. Skoog, D. M. West, F. J. Holler, Fundamentals of Analytical Chemistry, 5th edition, Saunders College Publishing, 1988.[30] N. J. Turro, Modern Molecular Photochemistry, Mill Valley, University Science Books, California, 1991, p17.[31] E. Conwell, Trip., 5, 218-222 (1997).[32] P. Schouwink, A. H. Schafer, C. Seidel, H. Fuchs, Thin Solid Films, 372, 163 (2000).[33] R. Joseph, R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 1999, p368.[34] A. A. Lamola, N. J. Turro, Energy Transfer and Organic Photochemistry, Wiley & Sons, New York, 1969, p17.[35] T. Förster, Discuss Faraday Soc., 2 , 27 (1959), [36] A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A.M. Fox, D.D.C. Bradley, Chemical Physics Letters, 339, 331 (2001).[37] J.-I. Lee, I.-N. Kang, D.-H. Hwang, H.-K. Shim, Chem. Mater., 8, 1928 (1996).[38] J.-W. Yu, J. K. Kim, H. N. Cho, D. Y. Kim, and C. Y. Kim, Macromolecules, 33, 5443 (2000)[39] L. Ding, F. E. Karasz, L. Zhiqun, Z. Min, Macromolecules, 34, 9183 (2001)[40] N. S. Cho, D.-H. Hwang, J.-I. Lee, B.-J. Jung, H.-K. Shim, Macromolecules, 35,1224 (2002) .[41] J. Morgado, F. Cacialli, R.H. Friend, R. Iqbal, G. Yahioglu, L. R. Milgrom, S. C. Moratti, A. B. Holmes, Chemical Physics Letters, 325, 552 (2000).[42] 戚務聖;光訊,第89期,P.11,民90年4月.[43] J. F. Rusling, S. L. Suib, Adv. Mater., 12, 922 (1994). [44] Y. Yang, E. Westerweel, C. Zhang, P. Smith, A. J. Heeger, J. Appl. Phys., 77, 694 (1995)[45] Q. Pei, G. Yu, C. Zhang, Y. Yang, A. J. Heeger, Science, 269, 1086(1995)[46] S.-W. Hwang , Y. Chen, Macromolecules, 34, 2982 (2001). [47] 黃孝文,”主鏈含孤立電子和電洞傳送性發光團之聚芳香醚的合成與光電性質”, 國立成功大學化學工程研究所博士論文,民國90年.[48] 楊豐瑜;化工資訊,第三期,P.18,2002.[49] W. A. Herrmann, C.-P. Reisinger, Michael Spiegler, Journal of Organometallic Chemistry, 557, 93 (1998).[50] J. P. Genet, M. Savignac, Journal of Organometallic Chemistry, 576 , 305 (1999)[51] T. R. Manfred , B. Rolf, K. Wanninger, Tetrahedron Letters, 37, 4499 (1996). [52] 廖麒貴,”主鏈含孤立發光基及噁□二基高分子的合成及電化學性質”, 國立成功大學化學工程研究所碩士論文,民國89年.[53] I. D. Parker, J. Appl. Phys., 3, 1656 (1994).[54] 許榮賓,”含發光基及噁二唑基高分子的合成與光電性質探討”, 國立成功大學化學工程研究所碩士論文,民國90年.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top