(3.238.7.202) 您好!臺灣時間:2021/02/26 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏宏
研究生(外文):Po-Hung Chen
論文名稱:二氧化碳-丁醇異構物系統之高壓相平衡研究
論文名稱(外文):High-Pressure Phase Equilibrium for Carbon Dioxide-Isomeric Butanol Systems
指導教授:陳慧英陳慧英引用關係
指導教授(外文):Huey-Ing Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:132
中文關鍵詞:相平衡異構物二氧化碳超臨界流體熱力學性質丁醇狀態方程式
外文關鍵詞:butanolcarbon dioxideisomerphase equilibriumsupercritical fluidthermodynamic propertyequation of state
相關次數:
  • 被引用被引用:2
  • 點閱點閱:553
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:2
本研究中,首先改善靜態式相平衡實驗裝置,以準確量測二氧化碳-正丁醇、二氧化碳-異丁醇、二氧化碳-第二丁醇與二氧化碳-第三丁醇雙成分系統於溫度331.93、341.59、351.27 K,壓力50 ~ 120 bar之汽液相平衡數據,以及二氧化碳-水-正丁醇三成分系統於溫度331.93、341.59、351.27 K,壓力60、80 bar下之相平衡數據。為了證明本研究相平衡數據之準確性與可靠性,以二氧化碳-正丁醇與二氧化碳-水-正丁醇系統之實驗數據與文獻值作比較,發現結果相當吻合。
其次,分別以Soave-Redlich-Kwong狀態方程式和Peng-Robinson狀態方程式配合傳統雙參數混合律,進行四組二氧化碳-丁醇異構物雙成分系統之理論迴歸計算,求得最佳之雙交互作用參數,並估算各系統之臨界條件、亨利常數、無限稀釋部分莫耳體積及Margules常數。結果發現,Soave-Redlich-Kwong狀態方程式之計算結果平均偏差值均小於1.1 %,較Peng-Robinson狀態方程式為佳。
針對二氧化碳-丁醇異構物雙成分系統之相行為來作比較,以第三丁醇與二氧化碳之互溶度最高,其次分別是第二丁醇、異丁醇、正丁醇。此互溶度隨著壓力之增加而增大,且隨著溫度之增高而減小。文中並以丁醇異構物之分子結構性質,與二氧化碳-丁醇異構物雙成分系統之相行為作一關連性之探討。
In this study, the improved-static type phase equilibrium apparatus was fixed to measure the phase equilibrium data of CO2+n-butanol, CO2+iso-butanol, CO2+2-butanol, and CO2+tert-butanol binary system at temperature 331.93, 341.59, and 351.27 K, and pressure from 50 to 120 bar. The phase equilibrium for CO2+H2O+n-butanol ternary system was also measured at temperature 331.93, 341.59, and 351.27 K, and pressure 60 and 80 bar. In order to ensure the accuracy and reliability of these measurements, the experimental data were compared with literatures and found these were in quite good agreement.
In addition, the Soave-Redlich-Kwong equation of state and Peng-Robinson equation of state with conventional two-parameter mixing rule were used to regress the experimental data for the four CO2+isomeric butanol systems. The thermodynamic properties including the binary interaction parameters, critical conditions, Henry’s constants, infinite dilute partial molar volumes, and Margules constants for these binary systems were also estimated. It showed that Soave-Redlich-Kwong equation of state obtained the better fitting results with average deviations less than 1.1 %.
Comparing the mutual solubilities of CO2+isomeric butanol systems, it indicated that they were decreased in the order of CO2+tert-butanol, CO2+2-butanol, CO2+iso-butanol, and CO2+n-butanol. And the mutual solubilities increase with the increasing pressure and decrease with the increasing temperature. Furthermore, the phase behaviors of CO2+isomeric butanol systems can be well correlated by the structural properties of the corresponding butanols.
誌謝
中文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥I
英文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥II
總目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥IV
表目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥VIII
圖目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥IX
符號說明‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥XIII

第一章 緒論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
1.1 相平衡簡介‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1
1.2 高壓相平衡裝置之簡介‥‥‥‥‥‥‥‥‥‥‥‥2
1.2.1 靜態式相平衡裝置‥‥‥‥‥‥‥‥‥‥‥‥‥2
1.2.2 流動式相平衡裝置‥‥‥‥‥‥‥‥‥‥‥‥‥2
1.2.3 半流動式相平衡裝置‥‥‥‥‥‥‥‥‥‥‥‥3
1.2.4 循環式相平衡裝置‥‥‥‥‥‥‥‥‥‥‥‥‥3
1.2.5 綜合式相平衡裝置‥‥‥‥‥‥‥‥‥‥‥‥‥4
1.2.6 改良式相平衡裝置‥‥‥‥‥‥‥‥‥‥‥‥‥4
1.3 高壓相平衡之應用‥‥‥‥‥‥‥‥‥‥‥‥‥‥5
1.3.1 超臨界流體介紹‥‥‥‥‥‥‥‥‥‥‥‥‥‥5
1.3.2 交錯區域‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7
1.4 文獻回顧‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥8
1.5 研究動機‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9

第二章 理論部分‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17
2.1 前言‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17
2.2 相平衡理論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17
2.2.1 逸壓與逸壓係數‥‥‥‥‥‥‥‥‥‥‥‥‥17
2.2.2 汽液相平衡‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥18
2.2.3 汽液相平衡計算‥‥‥‥‥‥‥‥‥‥‥‥‥19
2.3 狀態方程式‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥20
2.3.1 對應狀態式‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥22
2.3.2 維里狀態方程式‥‥‥‥‥‥‥‥‥‥‥‥‥22
2.3.3 立方型狀態方程式‥‥‥‥‥‥‥‥‥‥‥‥23
2.3.4 複雜型狀態方程式‥‥‥‥‥‥‥‥‥‥‥‥24
2.4 混合律‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥24
2.5 亨利常數、無限稀釋部分莫耳體積與Margules常數‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥25
2.6 實驗計算方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥28
2.6.1 線性迴歸狀態方程式計算‥‥‥‥‥‥‥‥‥28
2.6.2 亨利常數、無限稀釋部分莫耳體積與Margules常數計算‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥29

第三章 實驗部分‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥34
3.1 藥品‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥34
3.2 實驗裝置‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥34
3.3 實驗步驟‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥37
3.3.1 檢量線製作‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥37
3.3.2 測漏部分‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38
3.3.3 準備工作‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥38
3.3.4 平衡部分‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥39
3.3.5 取樣分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥40

第四章 結果與討論‥‥‥‥‥‥‥‥‥‥‥‥‥‥46
4.1 儀器校正‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥46
4.1.1 熱電偶校正‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥46
4.1.2 恆溫箱內溫度之測量‥‥‥‥‥‥‥‥‥‥‥46
4.1.3 壓力計校正‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥47
4.2 氣相層析分析‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥47
4.2.1 分析條件‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥47
4.2.2 檢量線‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥48
4.3 二氧化碳-丁醇異構物雙成分系統‥‥‥‥‥‥50
4.3.1 二氧化碳-正丁醇系統‥‥‥‥‥‥‥‥‥‥50
4.3.2 二氧化碳-異丁醇系統‥‥‥‥‥‥‥‥‥‥51
4.3.3 二氧化碳-第二丁醇系統‥‥‥‥‥‥‥‥‥51
4.3.4 二氧化碳-第三丁醇系統‥‥‥‥‥‥‥‥‥52
4.4 二氧化碳-丁醇異構物系統之相平衡理論計算‥53
4.4.1 狀態方程式迴歸結果‥‥‥‥‥‥‥‥‥‥‥53
4.4.2 臨界壓力與臨界組成之預估‥‥‥‥‥‥‥‥53
4.4.3 二氧化碳與丁醇異構物互溶度之比較‥‥‥‥55
4.4.4 分子結構與互溶度之關連‥‥‥‥‥‥‥‥‥56
4.4.5 亨利常數、無限稀釋部分莫耳體積與Margules常數‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥57
4.5 二氧化碳-水-正丁醇三成分系統‥‥‥‥‥‥‥58

第五章 結論‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥111

參考文獻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥113
附錄A‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥123
附錄B‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥125
附錄C‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥128
附錄D‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥130
自述
[1] Brunner, G., Gas Extraction, Springer, New York (1994).
[2] 林河木、李明哲, 高溫汽-液相平衡量測與數據關聯, 化工, 43, 33-42 (1996).
[3] Nagahama, K., VLE measurements at elevated pressures for process development, Fluid Phase Equilibria, 116, 361-372 (1996).
[4] 蔡坤龍、陳經緯、蔡繁男, 超臨界流體萃取, 化工, 42, 32-47 (1995).
[5] 李亮三、黃俊豐, 流體相平衡實驗裝置, 化工, 40, 61-75 (1993).
[6] Chen, H. I., H. Y. Chang, E. T. S. Huang, and T. C. Huang, A new phase behavior apparatus for supercritical fluid extraction study, Industrial and Engineering Chemistry Research, 39, 4849-4852 (2000).
[7] Johnston, K., “Supercritical Fluids”, Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., John Wiley & Sons, New York (1984).
[8] Brennecke, J. F., and C. A. Eckert, Phase-equilibria for supercritical fluid process design , AIChE Journal, 35, 1409-1427 (1989).
[9] 王少芬, 魏建謨, 瞿港華, 超臨界流体技術研究之發展, 化學, 57, 131-142 (1999).
[10] 桂椿雄, 沈桓儀, 超臨界流體層析儀之介紹, 化工技術, 6, 140-146 (1998).
[11] 朗慶勇, 魏建謨, 羅建苗, 瞿港華, 超臨界流體萃取技術的應用及展望, 科儀新知,20, 90-97 (1999).
[12] Poling, B. E., J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York (2001).
[13] Behles, J. A., and J. M. DeSimone, Developments in CO2 research, Pure and Applied Chemistry, 73, 1281-1285 (2001).
[14] da Silva, M. V., and D. Barbosa, High-pressure phase equilibrium data for aromatic components of wine: carbon dioxide/n-butanal system, Industrial and Engineering Chemistry Research, 39, 4427-4430 (2000).
[15] Ooi, C. K., A. Bhaskar, M. S. Yener, D. Q. Tuan, J. Hsu, and S. S. H. Rizvi, Continuous supercritical carbon dioxide processing of palm oil, Journal of the American Oil Chemists' Society, 73, 233-237 (1996).
[16] Li S., and S. Hartland, A new industrial process for extracting cocoa butter and xanthines with supercritical carbon dioxide, Journal of the American Oil Chemists' Society, 73, 423-429 (1996).
[17] Andersson, M. B. O., M. Demirbüker, and L. G. Blomberg, Semi-continuous extraction/purification of lipids by means of supercritical fluids, Journal of Chromatography A, 785, 337-343 (1997).
[18] Shih, F., and K. Diagle, Supercritical fluid extraction of encapsulated oil products, Journal of the American Oil Chemists' Society, 78, 1057-1059 (2001).
[19] Borch-Jensen, C., and J. Mollerup, Phase equilibria of fish oil in sub- and supercritical carbon dioxide, Fluid Phase Equilibriua, 138, 179-211 (1997).
[20] Lehotay, S. J., Supercritical fluid extraction of pesticides in foods, Journal of Chromatography A, 785, 289-312 (1997).
[21] 董志宏, 超臨界流體擠壓技術, 食品工業, 33, 24-30 (2001).
[22] Berna, A., A. Cháfer, and J. B. Montón, High-pressure solubility data of the system resveratrol(3) + ethanol(2) + CO2(1), The Journal of Supercritical Fluids, 19, 133-139 (2001).
[23] Radcliffe, C., K. Maguire, and B. Lockwood, Applications of supercritical fluid extraction and chromatography in forensic science, Journal of Biochemical and Biophysical Methods, 43, 261-272 (2000).
[24] Hartono, R., G. A. Mansoori, and A. Suwono, Prediction of solubility of biomolecules in supercritical solvents, Chemical Engineering Science, 56, 6949-6958 (2001).
[25] Hu, Z. J., J. X. Dong, and G. X. Chen, Preparation of nanometer titanium oxide with n-butanol supercritical drying, Powder Technology, 101, 205-210 (1999).
[26] Wai, C. M., and H. Ohde, Synthesizing nanoparticles in supercritical carbon dioxide, Journal of the Chinese Institute of Chemical Engineers, 32, 253-261 (2001).
[27] Matson, D. W., J. L. Fulton, R. C. Petersen, and R. D. Smith, Rapid expansion of supercritical fluid solutions - solute formation of powders, thin-films, and fibers Industrial and Engineering Chemistry Research, 26, 2298-2306 (1987).
[28] 林文發、盧偉珠, 超臨界流體應用於棉纖維的染色, 觸媒與製程, 8, 67-74 (2000).
[29] 陳靜芬, 新世代的綠色製程-超臨界流體染色技術, 化工資訊, 15, 8-10 (2001).
[30] Scholsky, K. M., Process polymers with supercritical fluids, Chemtech, 17, 750-757 (1987).
[31] Hénon, F. E., M. Camaiti, A. L. C. Burke, R. G. Carbonell, J. M. DeSimone, and F. Piacenti, Supercritical CO2 as a solvent for polymeric stone protective materials, The Journal of Supercritical Fluids, 15, 173-179 (1999).
[32] Takeshita, Y., Y. Sato, and S. Nishi, Study of extraction of metals from CCA-treated wood with supercritical CO2 containing acetylacetone: extraction of Cu by continuous addition of cetylacetone, Industrial and Engineering Chemistry Research, 39, 4496-4499 (2000).
[33] 郭子禎, 高密度二氧化碳洗淨技術發展簡介, 金屬工業, 34, 88-92 (2000).
[34] 林新發、廖俊雄、陳建忠、凌永健, 超臨界流體萃取和潔淨科技(下), 科儀新知, 17, 82-92 (1995).
[35] Jiang, T., Y. Niu, and B. Zhong, Synthesis of higher alcohols from syngas over Zn-Cr-K catalyst in supercritical fluids, Fuel Processing Technology, 73, 175-183 (2001).
[36] Louie, P. K. K., R. C. Timpe, S. B. Hawthorne, and D. J. Miller, Sulfur removal from coal by analytical-scale supercritical fluid extraction (SFE) under pyrolysis conditions, Fuel, 73, 1173-1178 (1994).
[37] 汪禧年, 超臨界流體層析儀簡介, 科儀新知, 16, 39-50 (1994).
[38] Gitterman, M., and I. Procaccia, Quantitative theory of solubility in supercritical fluids, Journal of Chemical Physics, 78, 2648-2654 (1983).
[39] Chimowitz, E. H., and K. J. Pennisi, Process synthesis concepts for supercritical gas extraction in the crossover region, AIChE Journal, 32, 1665-1676 (1986).
[40] Chimowitz, E. H., F. D. Kelley, and F. M. Munoz, Analysis of retrograde behavior and the crossover effect in supercritical fluids, Fluid Phase Equilibriua, 44, 23-52 (1988).
[41] Kelley, F. D., and E. H. Chimowitz, Experimental data for the crossover process in a model supercritical system, AIChE Journal, 35, 981-987 (1989).
[42] Johnston, K. P., S. E. Barry, N. K. Read, and T. R. Holcomb, Separation of isomers using retrograde crystallization from supercritical fluids, Industrial and Engineering Chemistry Research, 26, 2372-2377 (1987).
[43] Lucien, F. P., and N. R. Foster, Influence of matrix composition on the solubility of hydroxybenzoic acid isomers in supercritical carbon-dioxide, Industrial and Engineering Chemistry Research, 35, 4686-4699 (1996).
[44] Ekart, M. P., K. L. Bennett, S. M. Ekart, G. S. Gurdial, C. L. Liotta, and C. A. Eckert, Cosolvent interactions in supercritical fluid solutions, AIChE Journal, 39, 235-248 (1993).
[45] Staby, A., and J. Mollerup, Mutual solubilities of mono-alcohols and carbon-dioxide - a review of experimental data, Fluid Phase Equilibria, 89, 351-381 (1993).
[46] Dohrn, R., and G. Brunner, High-pressure fluid-phase equilibria - experimental methods and systems investigated (1988-1993), Fluid Phase Equilibria, 106, 213-282 (1995).
[47] Fornari, R. E., P. Alessi, and I. Kikic, High-pressure fluid phase equilibria - experimental methods and systems investigated (1978-1987), Fluid Phase Equilibria, 57, 1-33 (1990).
[48] Gilbert, M. L., and M. E. Paulaitis, Gas-liquid equilibrium for ethanol water carbon-dioxide mixtures at elevated pressures, Journal of Chemical and Engineering Data, 31, 296-298 (1986).
[49] Hirohama, S., and T. Takatsuka, Measurement and correlation of phase-equilibria for the carbon dioxide-ethanol-water system, Journal of Chemical Engineering of Japan, 26, 408-415 (1993).
[50] Yoon, J. H., H. Lee, and B. H. Chung, High-pressure 3-phase Equilibria for the carbon dioxide-ethanol-water system, Fluid Phase Equilibria, 102, 287-292 (1994).
[51] Lee, J. S., and Y. Y. Lee, Phase-equilibria for carbon-dioxide ethanol water system at elevated pressures, The Journal of Supercritical Fluids, 7, 219-230 (1994).
[52] Diandreth, J. R., and M. E. Paulaitis, An experimental-study of 3-phase and 4-phase equilibria for isopropanol water carbon-dioxide mixtures at elevated pressures, Fluid Phase Equilibria, 32, 261-271 (1987).
[53] Diandreth, J. R., and M. E. Paulaitis, Multiphase behavior in ternary fluid mixtures - a case study of the isopropanol-water-CO2 system at elevated pressures, Chemical Engineering Science, 44, 1061-1069 (1989).
[54] Wendland, M., H. Hasse, and G. Maurer, Multiphase high-pressure equilibria of carbon-dioxide-water-isopropanol, The Journal of Supercritical Fluids, 6, 211-222 (1993).
[55] Adrian, T., H. Hasse, and G. Maurer, Multiphase high-pressure equilibria of carbon dioxide-water-propionic acid and carbon dioxide-water-isopropanol, The Journal of Supercritical Fluids, 9, 19-25 (1996).
[56] Adrian, T., S. Oprescu, and G. Maurer, Experimental investigation of the multiphase high-pressure equilibria of carbon dioxide-water-(1-propanol), Fluid Phase Equilibria, 132, 187-203 (1997).
[57] Pfohl, O., J. Petersen, R. Dorhn, and G. Brunner, Partitioning of carbohydrates in the vapor-liquid-liquid region of the 2-propanol plus water plus carbon dioxide system, The Journal of Supercritical Fluids, 10, 95-103 (1997).
[58] King, M. B., D. A. Alderson, F. H. Fallah, D. M. Kassim, J. R. Sheldon, and R. S. Mahmud, Chemical Engineering at Supercritical Fluid Conditions, Chapter 2, Ann Arbor Science (1983).
[59] Eissler, R. L., and J. P. Friedrich., Estimation of supercritical fluid-liquid solubility parameter differences for vegetable oils and other liquids from data taken with a stirred autoclave, Journal of the American Oil Chemists’ Society, 65, 764-767 (1988).
[60] Jennings, D. W., R. J. Lee, and A. S. Teja, Vapor-liquid-equilibria in the carbon-dioxide + ethanol and carbon-dioxide + 1-butanol systems, Journal of Chemical and Engineering Data, 36, 303-307 (1991).
[61] Suzuki, T., N. Tsuge, and K. Nagahama, Solubilities of ethanol, 1-propanol, 2-propanol and 1-butanol in supercritical carbon-dioxide at 313K and 333K, Fluid Phase Equilibria, 67, 213-226 (1991).
[62] Chang, C. J., The solubilities of carbon-dioxide in organic-solvents at elevated pressures, Fluid Phase Equilibria, 74, 235-242 (1992).
[63] Jensen, C. B., A. Staby, and J. Mollerup, Mutual solubility of 1-butanol and carbon-dioxide, ethene, ethane, or propane at a reduced supercritical solvent temperature of 1.03, The Journal of Supercritical Fluids, 7, 231-244 (1994).
[64] Ishihara, K., A. Tsukajima, H. Tanaka, M. Kato, T. Sako, M. Sato, and T. Hakuta, Vapor-liquid equilibrium for carbon dioxide plus 1-butanol at high pressure, Journal of Chemical and Engineering Data, 41, 324-325 (1996).
[65] Yeo, S. D., S. J. Park, J. W. Kim, and J. C. Kim, Critical properties of carbon dioxide plus methanol, plus ethanol, +1-propanol, and +1-butanol , Journal of Chemical and Engineering Data, 45, 932-935 (2000).
[66] Stevens, R. M. M., X. M. Shen, T. W. deLoos, and J. D. Arons, A new apparatus to measure the vapour-liquid equilibria of low-volatility compounds with near-critical carbon dioxide. Experimental and modelling results for carbon dioxide plus n-butanol, plus 2-butanol, plus 2-butyl acetate and plus vinyl acetate systems, The Journal of Supercritical Fluids, 11, 1-14 (1997).
[67] Silva-Oliver, G., and L. A. Galicia-Luna, Vapor-liquid equilibria near critical point and critical points for the CO2+1-butanol and CO2+2-butanol systems at temperatures from 324 to 432 K, Fluid Phase Equilibria, 182, 145-156 (2001).
[68] Hiaki, T., H. Miyagi, T. Tsuji, and M. Hongo, Vapor-liquid equilibria for supercritical carbon dioxide plus butanol systems at 313.2K, The Journal of Supercritical Fluids, 13, 23-27 (1998).
[69] Stevens, R. M. M., X. M. Shen, T. W. deLoos, and J. D. Arons, High-pressure vapour-liquid equilibria in the systems carbon dioxide plus 2-butanol, plus 2-butyl acetate, plus vinyl acetate and calculations with three EOS methods, Fluid Phase Equilibria, 138, 159-178 (1997).
[70] Heo, J. H., H. Y. Shin, J. U. Park, S. N. Joung, S. Y. Kim, and K. P. Yoo, Vapor-liquid equilibria for binary mixtures of CO2 with 2-methyl-2-propanol, 2-methyl-2-butanol, octanoic acid, and decanoic acid at temperatures from 313.15 K to 353.15 K and pressures from 3 MPa to 24 Mpa, Journal of Chemical and Engineering Data, 46, 355-358 (2001).
[71] Kim, J. S., J. H. Yoon, and H. Lee, High-pressure phase-equilibria for carbon-dioxide 2-methyl-2-propanol and Carbon-dioxide 2-methyl-2-propanol water - measurment and prediction, Fluid Phase Equilibria, 101, 237-245 (1994).
[72] Panagiotopoulos, A. Z., and R. C. Reid, Multiphase high-pressure equilibria in ternary aqueous systems, Fluid Phase Equilibria, 29, 525-534 (1986).
[73] Winkler, S., and K. Stephan, Fluid multiphase behavior in ternary mixtures, of CO2, H2O and 1-butanol, Fluid Phase Equilibria, 137, 247-263 (1997).
[74] 張宏毅,“二氧化碳-水-正丁醇三成分系統高壓相平衡之研究”, 國立成功大學碩士論文 (2000).
[75] Gibbs, J. W., The Collected Works of J. Willard Gibbs, Longmans, New York (1928).
[76] Prausnitz, J. M., W. C. Edmister, and K. C. Chao, Hydrocarbon vapor-liquid equilibria and solubility parameter, AIChE Journal, 6, 214 (1960).
[77] Walas, S. M., Phase Equilibria in Chemical Engineering, Butterworth, Boston (1985).
[78] Pitzer, K. S., The volumetric and thermodynamic properties of fluids. I. Theoretical basis and virial coerfficients, Journal of the American Chemical Society, 77, 3427 (1955).
[79] Lee, B. I., and M. G. Kesler, A generalized thermodynamic correlation based on three-parameter corresponding states, AIChE Journal, 21, 510 (1975).
[80] Ursell, H. D., The evaluation of Gibbs’ phase integral for imperfect gases, Proceedings of the Cambridge Philosophical Society, 23, 685 (1927).
[81] Soave, G., Equilibrium constants from a modified Redlich-Kwong equation of state, Chemical Engineering Science, 27, 1197-1203 (1972).
[82] Peng, D. Y., and D.B. Robinson, A new two-constant equation of state, Industrial and Engineering Chemistry Fundamentals, 15, 59-64 (1976).
[83] Benedict, M., G. B. Webb, and L. C. Rubin, An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures, The Journal of Chemical Physics, 8, 334 (1940).
[84] Krichevsky, I. R., and J. S. Kasarnovsky, Thermodynamical calculations of solubilities of nitrogen and hydrogen in water at high pressure, Journal of the American Chemical Society, 57, 2168 (1935).
[85] Krichevsky, I. R., and A. A. Ilinskaya, Partial molar volumes of gases dissolveed in liquid (the thermodynamics of dilute solutions of nonelectrolytes), Acta Physicochime, 20, 327(1945).
[86] Bender, E., U. Klein, W. Ph Schmitt, and J. M. Prausnitz, Thermodynamics of gas solubility: relation between equation-of-state and activity-coefficient models, Fluid Phase Equilibria, 15, 241-255 (1984).
[87] http://vt2pc8.vt2.tu-harburg.de/, The program PE ( = Phase Equilibria ) has been developed in by Professor Brunner’s research group at the Technical University of Hamburg-Harburg, starting in 1985.
[88] Wagner, W., New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations, Cryogenics, 13, 470-482 (1973).
[89] Chen, H. I., H. Y. Chang and E. T. S. Huang, Proceedings of the 5th International Symposium on Supercritical Fluids, Atlanta, USA (2000).
[90] 廖培欣, “二氧化碳液體在海洋中的溶解度之研究”, 國立成功大學碩士論文 (1999).
[91] Huang, F. H., F. T. H. Chung, M. H. Li, L. L. Lee, and K. E. Starling, Journal of Chemical Engineering of Japan, 18, 490-496 (1985).
[92] Yee, G. G., J. L. Fulton, and R. D. Smith, Fourier-transform infrared spectroscopy of molecular interactions of heptafluoro-1-butanol or 1-butanol in supercritical carbon dioxide and supercritical ethane, The Journal of Physical Chemistry, 96, 6172-6181 (1992).
[93] Rytting, J. H., B. D. Anderson, and T. Higuchi, Vapor pressure studies of the self-association of alcohols in isooctane. 2. The effect of chain branching, The Journal of Physical Chemistry, 82, 2240-2245 (1978).
[94] 姚俊旭,“次臨界及超臨界狀態下二氧化碳對芳香烴、重正烷烴及重烷醇之等溫相平衡”, 國立成功大學博士論文 (1992).
[95] Adrian, T., M. Wendland, H. Hasse, and G. Maurer, High-pressure multiphase behaviour of ternary systems carbon dioxide water polar solvent: review and modeling with the Peng-Robinson equation of state, The Journal of
Supercritical Fluids, 12, 185-221 (1998).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔