(3.231.29.122) 您好!臺灣時間:2021/02/25 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃盈賓
研究生(外文):Yin-Ping Huang
論文名稱:熱固/熱塑性高分子混摻系統相型態與反應機構之探討
論文名稱(外文):Study on Morphology and Reaction Mechanisms of Epoxy/Thermoplastic Polymers Blends in Uncured or Cured States
指導教授:吳逸謨
指導教授(外文):E. M. Woo
學位類別:博士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:146
中文關鍵詞:相型態相容性熱塑性高分子結晶動力交聯動力環氧樹脂
外文關鍵詞:the electron-donating group (EDG) and curing kinPVPhspherulitesmiscibilityDGEBAPEOmorphology
相關次數:
  • 被引用被引用:7
  • 點閱點閱:816
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:203
  • 收藏至我的研究室書目清單書目收藏:2
本文主要針對以4,4'-diamino diphenylsulfone (DDS)固化的diglycidylether of bisphenol-A (DGEBA)環氧樹脂以及與高分子poly(4-vinylphenol) (PVPh)之混摻系統,探討其相容性、相型態、交聯動力和反應機構。經由微熱卡計分析儀(DSC)和掃瞄式電子顯微鏡(SEM),得知以DDS為交聯劑,固化DGEBA/PVPh摻合系統,各個組成均存在單一Tg值,而且呈現均勻的單一均相的網狀結構,是屬於一個罕見的熱塑性/熱固性高分子相容摻合系統。主要是由於DGEBA和PVPh產生化學反應所導致的,經由傅利葉紅外線光譜儀(FT-IR)和核磁共振(NMR)對於整個系統的物理和化學作力的探討,得知在無交聯劑存在的條件下,epoxy單體和PVPh分子之間在高溫的情況下,由於PVPh苯環氫氧基的對位(para-position)上,存在一屬於推電子基(the electron-donating group)的烷基(the alkyl group),會促使PVPh的酚基(the phenyl-hydroxyl group)離子化成為the phenoxide ion,能夠攻擊epoxy的環氧基(the epoxide group),進行化學鍵結反應,進而形成存在單一Tg的均相系統。更進一步,利用具有相同官能基的模式分子(model compound)模擬DGEBA單體和PVPh分子間的化學反應,再藉由液態NMR推導出詳細的化學反應機構。除此之外,關於PVPh對於DDS固化epoxy系統之交聯反應速率和動力模式的影響,當PVPh高分子加入環氧樹脂摻合系統後,由於PVPh和DGEBA之間產生的化學反應,會使得整體的交聯反應速率變快,然而PVPh的加入並不會改變環氧樹脂的交聯反應動力模式,仍然可以用自催化反應動力模式加以描述。
本研究另一部份是探討交聯網狀結構對poly(ethylene oxide) (PEO)球晶型態、成長和結晶動力的影響。由於PEO/epoxy之間存有氫鍵作用力,等溫交聯反應前後DGEBA/PVPh/DDS摻合系統都是屬於均相系統,藉由熱分析、結晶動力分析、球晶型態和分子間作用力的探討,了解PEO球晶型態和結晶成長速率會受到非結晶相(epoxy/DDS)含量和化學結構的影響,例如官能基、分子量、交聯反應等。PEO和epoxy/DDS之間的氫鍵作用力在交聯前相當的強烈,因而非結晶相對於PEO的結晶相會產生entrapment效應,使得PEO的球晶變成類似羽毛狀的型態;然而交聯後網狀結構形成使得氫鍵作用力變小,因此PEO在epoxy/PEO交聯系統中的球晶型態,與純的PEO球晶相似。
The morphology and the curing behavior of a diglycidylether of bisphenol-A (DGEBA) epoxy which was cured with 4,4'-diamino diphenylsulfone (DDS) and its blends with poly(4-vinylphenol) (PVPh) of various compositions were mainly studied using a differential scanning calorimeter (DSC). Miscibility according to criterion of a single glass transition temperature in the complete composition has been demonstrated in the cured epoxy/PVPh blends. In addition, the morphology of these blends was examined using a scanning electron microscope (SEM) and a homogeneous single-phase DDS-cured PVPh/epoxy network has been observed in the blends of the complete compositions. These results were mainly dependent on the chemical reactions between epoxy and PVPh. By using Fourier-transform infrared spectroscopy (FT-IR) and 13C nuclear magnetic resonance (NMR) techniques, mechanisms of reactions leading to a homogeneous network between the DGEBA epoxy resin and PVPh polymer have been proven using model compounds. Because the para-alkyl group in the aromatic of PVPh belongs to the electron-donating group (EDG), it would ionize the phenyl-hydroxyl group to form the phenoxide ion to attack the epoxide ring of DGEBA at high temperatures. Therefore, at elevated temperatures, the epoxy/PVPh mixture developed a network-like homogeneous solid, which was a result of reactions between the epoxide of DGEBA epoxy and phenyl-hydroxyl of the linear PVPh polymer. In addition, the addition of PVPh into DDS amine-cured epoxy significantly affected curing reaction of the DGEBA/PVPh/DDS blend. The cure reaction rates for the epoxy blends with PVPh were higher than that of DDS-cured neat epoxy. However, an autocatalytic kinetic mechanism could be found for the curing behavior of DDS-cured epoxy/PVPh blends, which remained independent of the addition of PVPh.
The other part of this study was to investigate poly(ethylene oxide) (PEO) growth kinetics and morphology as influenced by the state of cure in a crosslinking system. PEO was miscible with a crosslinking epoxy system (DGEBA/DDS) (in the amorphous domains) before and after cure. Thermal analysis, growth kinetics analysis, morphology characterization and the intermolecular interaction were performed and the results are in good agreement. The morphology and growth kinetics of the PEO crystals was in turn affected by the contents and chemical structures (functional group, molecular weight, crosslink, etc.) and the entrapment of the amorphous diluents (ie., epoxy/DDS). Owing to the effect of the entrapment of the amorphous phase, PEO spherulites presented a feather-like morphology. The hydrogen bonding interaction was more significant before cure due to the interactions between the ether group of PEO and the amine group of DDS. The interaction between PEO and epoxy/DDS become less in the cured network. Therefore, the hydrogen bonding interactions in DGEBA/PEO/DDS mixtures before and after cure have significant influence on the morphology and growth kinetics of the PEO crystals.
中文摘要 I
Abstract III
致謝 V
Content VI
List of Tables VIII
List of Figures IX
Chapter 1 Introduction 1
Chapter 2 Theory 9
Chapter 3 Experiment 12
3.1 Materials 12
3.2 Sample preparation 13
3.2.1 The blends of epoxy and PVPh 13
3.2.2 Crystallization of PEO blends with DDS-cured epoxy 14
3.3 Apparatus 17
Chapter 4 Results and Discussions 20
4.1 Physical Miscibility and Chemical Reactions between Diglycidylether of bisphenol-A Epoxy and Poly(4-vinyl phenol) 20
4.1.1 Thermodynamic behaviors between epoxy and PVPh 20
4.1.2 Morphology characterization of networks 23
4.1.3 Interaction between epoxy monomers and PVPh molecules examined by FTIR 25
4.1.4 Network structure analysis for epoxy/PVPh mixtures 28
4.1.5 Summary 34
4.2 NMR Characterizations on Reaction Mechanisms between Diglycidylether of Bisphenol-A Epoxy and Poly(4-vinyl phenol) Using Model Compounds 53
4.2.1 PGE imulating the actual end of DGEBA unit 53
4.2.2 Identification of the reactivity for the phenyl-hydroxyl groups of PVPh 60
4.2.3 Summary 63
4.3 Morphology and Kinetic study of the Effect of Poly(4-vinylphenol) on the Curing Epoxy Resign 78
4.3.1 Miscibility and Curing Behavior of the DGEBA/PVPh/DDS mixtures 78
4.3.2 Analysis of Curing Kinetics 80
4.3.3 Summary 88
4.4 Influence of Molecular Interactions and The Entrapment on Sperulite Morphology and Growth Kinetics in Miscible Poly(ethylene oxide)/Epoxy Networks 113
Chapter 5 Conclusion 133
5.1 The Effect of The Thermoplastics, PVPh on The Morphology and Miscibility of The Amine-Cured Epoxy System 133
5.2 The Effect of The Physical Interaction on PEO Spherulite Morphology and Growth Kinetics in Poly(ethylene oxide)/Epoxy Networks 135
Reference 137
Appendix 142
Vita
1.C. B. Bucknall and I. K. Partridge, Polymer 1983, 24, 639.
2.C. B. Bucknall, C. M. Gomez and I. Quintard, Polymer 1994, 35, 353.
3.C. B. Bucknall and A. H. Gilbert, Polymer 1989, 30, 213.
4.D. J. Hourston and J. M. Lane, Polymer 1992, 33, 1379.
5.C. C. Su and E. M. Woo, Polymer 1995, 36, 2883.
6.V. di Liello, E. Martuselli, P. Musto, G. Rogosta and G. Scarrinzi, J. Polym. Sci. Polym. Phys. Edn. 1994, 32, 409.
7.M. C. Chen, D. J. Hourston and W. B. Sun, Eur. Polym. J. 1992, 28, 1471.
8.T. Ohsako, K. Nagura and I. Nozue, Plymer 1993, 34, 5080.
9.C. C. Su, J. F. Kuo and E. M. Woo, J. Polym. Sci.: Part B: Polym. Phys. 1995, 33, 2235.
10.R .A. Pearson and A. F. Yee, Polymer 1993, 34, 3658.
11.T. J. Horng and E. M. Woo, Polymer 1998, 39, 4115.
12.Q. Guo, Polymer 1995, 36, 4753.
13.C. B. Bucknall and I. K. Partridge, Polym. Eng. Sci. 1986, 26, 54.
14.Q. Guo, Polymer 1993, 34, 70.
15.H. K. Hseih and E. M. Woo, J. Polym. Sci.: Part B: Polym. Phys. 1996, 34, 2591.
16.B. S. Kim, T. Chiba and T. Inoue, Polymer 1995, 36, 43.
17.M. Romg and H. Zeng, Polymer 1997, 38, 269.
18.K. Yamanaka and T. Inoue, Polymer 1989, 30, 662.
19.X. Zhang and D. H. Solomon, Macromolecules 1994, 27, 4919.
20.Z. Zhong, Q. Guo, Polymer 1998, 39, 517.
21.X. Luo, S. Zheng, N. Zhang and D. Ma, Polymer 1994, 35, 2619.
22.C. C. Su and E. M.Woo, Macromolecules 1995, 28, 6779.
23.M. Rong and H. Zeng, Polymer 1996, 37, 2525.
24.M. S. Li, C. C. M. Ma, J. L. Chen, M. L. Lin and F. C. Chang, Macromolecules 1996, 29, 501.
25.S. Ritzenthaler, E. Girard-Reydet and J. P. Pascault, Polymer 2000, 41, 6375.
26.Q. Guo, X. Peng and Z. Wang, Polym Bull 1989, 21, 593.
27.E. M. Woo, Polym. J. 1997, 29, 523.
28.C. C. Su, J. F. Kuo and E. M. Woo, J. Polym. Sci.: Part B: Polym. Phys. 1995,33,2235.
29.C. C.Su and E. M.Woo, Macromolecules 1995, 28, 6779.
30.M. Romg and H. Zeng, Polymer 1997, 38, 269.
31.H. K. Hseih, C. C. Su and E. M. Woo, Polymer 1998, 39, 2175.
32.S. Han, W. G. Kim, H. G. Yoon and T. J. Moon, J. Polym. Sci.: Part A: Polym. Chem. 1998, 36, 773.
33.S. Han, W. G. Kim, H. G. Yoon and T. J. Moon, J. App. Polym. Sci. 1998, 68, 1125.
34.J. Y. Lee, H. K. Choi, M. J. Shim and S. W. Kim, Thermochim. Acta 2000, 343, 111.
35.H. Lee and, K. Neville, Handbook of epoxy resins, McGraw-Hill Book Company, New York, Chap. 2, 1967.
36.H. D. Mak and M. G. Rogers, Anal. Chem. 1972, 44, 837.
37.H. Batzer and S. A. Zahir, J. App. Polym. Sci. 1975, 19, 601.
38.A. J. Attias, B. Bloch and F. J. Lauprete, J. Polym. Sci.: Part A: Polym. Chem. 1990, 28, 3445.
39.L.Shechter and J.Wynstra, Ind. and Eng. Chem. 1956, 48, 86.
40.D. R. Boyd and E. R. Marle, J. Chem. Soc. 1914, 105, 2117.
41.E.Patat, E. Cremer, and O. Bobleter, J. Polym. Sci. 1954, 12, 486.
42.M.Kobayashi, F. Sanda and T. Endo, Macromolecules 1999, 32, 4751.
43.C Y. C.hen and W. Y. Chiu, Macromolecules 2000, 33, 6672.
44.E. J. Moskala, S. E. Howe, P. C. Painter and M. M.Coleman, Macromolecules 1984, 17, 1671.
45.E. J.Moskala, D. F. Varnell and M. M. Coleman, Polymer 1985, 26, 228.
46.C. C. Su, E. M. Woo, C. –Y. Chen and R. R. Wu, Polymer 1997, 38, 2047.
47.X. Zhang, K. Takegoshi and K. Hikichi, Macromolecules 1991, 24, 5756.
48.X. Zhang, K. Takegoshi and K. Hikichi, Macromolecules 1992, 25, 2336.
49.X. Zhang, K. Takegoshi and K. Hikichi, Macromolecules 1993, 26, 2198.
50.C. Qin, A. T. Pires and L. A. Belfiore, Polym. Commun. 1990, 31, 177.
51.Zhang, X.; Solomon, D. H. J. Polym. Sci. Part B: Polym. Phy. 1997, 35, 2223.
52.X. Zhang, M. G. Looney, D. H. Solomon and A. K. Whittaker, Polymer 1997, 23, 5835.
53.A. C. Lim, D. H. Solomon and X. Zhang, J. Polym. Sci. Part A: Polym. Phy. 1999, 37, 1347.
54.R. K. Harris, R. R. Yeung, P. Johncock and D. A.Jones, Polymer 1996, 37, 721.
55.M. Kobayashi, F. Sanda and T. Endo, Macromolecules 1999, 32, 4751.
56.R. M. Seyger, R. Hulst, J. P. M. van Duynhoven, R. Winter, L. van der Does, J. W. M. Noordermeer and A. Bantjes, Macromolecules 1999, 32, 7504.
57.T. Emrick, H. T. Chang and J. M. J. Frécht, J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 4850.
58.D. M. Doddrell, D. T. Pegg, M. R. Bendall, J. Magn. Reson. 1982, 48, 323.
59.R. E. Hurd and B. K. John, J. Magn. Reson. 1991, 91, 648.
60.W. P. Aue, E. Bartholdi and R. R. Ernst, J. Chem. Phys. 1976, 64, 2229.
61.R. Kiebooms, P. Adriaensens, D. Vanderzande, J. Gelan, M. J. Swann, D. Bloor, C. J. Drury and G. M. Brooke, Macromolecules 1996, 29, 5981.
62.H. Haubenstock, W. H. Yu, G. Odian and H. Wang, Macromol. Chem. Phys. 1998, 199, 2465.
63.M. R. Mijovic, Polym. Eng. Sci. 1974, 14, 231.
64.J. M. Kenny, J. Appl. Polym. Sci. 1994, 51, 761.
65.M. E. Ryan an A. Dutta, Polymer 1979, 20, 203.
66.K. C. Cole, Macromolecules 1991, 24, 3093.
67.K. C. Cole, J.-J. Hechler and D. Noel, Macromolecules 1991, 24, 3098.
68.L. Chiao, Macromolecules 1990, 23, 1286.
69.C. C. Su and E. M. Woo, Polymer 1995, 36, 2883.
70.T. H. Horng and E. M. Woo, Die Angewandte Macromolekulare Chemie 1998, 26, 31.
71.E. M. Woo and J. Seferis, J. Appl. Polym. Sci. 1990, 40, 1237.
72.K. Horie H. Hiura, M. Sawada, I. Mida and H. Kambe, J. Polym. Sci. (Part A1) 1970, 8, 1357.
73.S. Sourour and M. R. Kamal, Thermochim. Acta 1976, 14, 41.
74.K. F. Purcell and R. S. Drago, J. Am. Chem. Soc. 1967, 89, 2874.
75.E. M. Woo and H. K. Hseih, Polymer 1998, 39, 7.
76.B. J. Enns and J. K. Gillham, ACS Adv. Chem. Ser. 1983, 203, 27.
77.C. S. Wang and C. H. Lin, Polymer 200, 41, 8579.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔