跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何佳樺
研究生(外文):Chia-Hwa Ho
論文名稱:含奈米無機微粒塑膠光纖之製作及光學特性研究
論文名稱(外文):Preparation and Characterization of GI Optical Fibers Containing Inorganic Nanoparticles
指導教授:劉瑞祥
指導教授(外文):Jui-Hsiang Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:塑膠光纖奈米微粒逆微胞
外文關鍵詞:nanoparticleGRIN optical fiber
相關次數:
  • 被引用被引用:7
  • 點閱點閱:1160
  • 評分評分:
  • 下載下載:309
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以高折射率銀奈米微粒、高折射率非反應型diphenyl sulfide (DS)、低折射率單體methyl methacrylate (MMA),及azobisisobutyronitrile (AIBN)為起始劑,利用離心擴散聚合法製作GRIN型塑膠光纖棒。
藉由AOT/isooctane/H2O及AOT/MMA/H2O逆微胞系統製備銀奈米微粒,其在不同製備變因下UV吸收光譜的特性差異、所形成之最終粒子大小,以及導入塑膠光纖棒後之光學特性影響,本論文均有詳細探討。
由結果得知,銀奈米微粒的平均粒徑介於3~11nm之間,隨著水與界面活性劑莫耳比(W值)的增加而增加。在W值固定下,銀奈米微粒的粒徑也隨著AgNO3濃度與NaBH4濃度的提高而增大,但AOT濃度的增加,對粒徑並無顯著的影響。使用主鏈較長之油相溶劑,所製得的銀奈米微粒粒徑較小。
此外,銀奈米微粒可被導入塑膠光纖中,且可以有效增大光纖折射率差,提昇光學特性。但無機微粒之導入量會受限於製程中界面活性劑之存在,添加過量會導致不透明化。
GRIN plastic rods were fabricated by the method of centrifugal diffusing polymerization. Silver nanoparticles and diphenyl sulfide (DS) were used as non-reactive high refractive index monomers and methyl methacrylate (MMA) was used as a reactive low refractive index monomer; azobisisobutyronitrile (AIBN) was used as an initiator in this investigation.
The silver nanoparticles were prepared in AOT/isooctane/H2O and AOT/MMA/H2O reverse micellar systems. Dependence of parameters on the UV absorption spectra and the nanoparticle sizes were studied in detail. The optical characteristics of GRIN plastic rods with various amounts of silver nanoparticles were also estimated.
It was found that the diameters of silver nanoparticles ranged between 3 and 11 nm, increased with increasing the molar ratio of water to surfactant (W value). At a constant W value, the sizes of silver nanoparticles were found to increase with increasing of the concentrations of AgNO3 and NaBH4 , but were not significantly affected by AOT concentrations. The nanoparticle size would become smaller when the oily solvents with long mainchain were used.
In addition, the silver nanoparticles could be introduced into GRIN rods and increased the refractive index difference effectively. The amounts of inorganic nanoparticles introduced into GRIN rods were limited due to the formation of surfactant clusters in the plastic rods. The existence of surfactant may cause the aggregation of nanoparticles leading to the occurance of light scattering and becoming opaque.
中文摘要-----------------------------------------------------Ⅰ
英文摘要-----------------------------------------------------Ⅱ
目錄---------------------------------------------------------Ⅲ
表目錄-------------------------------------------------------Ⅵ
圖目錄-------------------------------------------------------Ⅶ
符號對照表--------------------------------------------------ⅩI
第一章 緒論---------------------------------------------------1
1-1前言-------------------------------------------------------1
1-2奈米粒子之簡介---------------------------------------------1
1-2-1奈米粒子之特性-------------------------------------------1
1-2-2逆微胞之簡介---------------------------------------------4
1-2-3 奈米粒子的應用------------------------------------------6
1- 3光纖之簡介------------------------------------------------7
1-3-1光纖之構造-----------------------------------------------8
1-3-2光纖之分類-----------------------------------------------9
1-3-3集束性光纖棒--------------------------------------------11
1-3-4塑膠光纖之製程技術--------------------------------------12
1-3-5塑膠光纖之現況與展望------------------------------------15
第二章 原理--------------------------------------------------19
2-1微乳化系統------------------------------------------------19
2-2 NaBH4還原AgNO3之反應機構---------------------------------20
2-3製備變因對奈米粒子的影響----------------------------------20
2-4光傳導原理與特性------------------------------------------21
2-4-1光傳送特性----------------------------------------------21
2-4-2光纖導波原理--------------------------------------------23
2-4-3 GI光纖原理---------------------------------------------25
2-4-4 GI型光纖之結像-----------------------------------------29
2-5研究動機--------------------------------------------------31
第三章 實驗--------------------------------------------------32
3-1儀器、藥品與材料------------------------------------------32
3-1-1儀器----------------------------------------------------32
3-1-2藥品----------------------------------------------------33
3-1-3材料----------------------------------------------------33
3-2試藥之純化------------------------------------------------34
3-3銀奈米粒子之製備與分析------------------------------------34
3-3-1銀奈米粒子的製備----------------------------------------34
3-3-2銀奈米粒子之UV/VIS吸收光譜------------------------------35
3-3-3銀奈米粒子粒徑之分析------------------------------------35
3-4集束性塑膠光纖棒之製作------------------------------------36
3-4-1單體之選擇----------------------------------------------36
3-4-2光纖棒之製程--------------------------------------------36
3-4-3漸變折射率分佈形成原理----------------------------------37
3-4-4截面處理------------------------------------------------37
3-5光纖棒折射率分佈之測試------------------------------------40
3-6結像圖之攝影----------------------------------------------41
第四章 結果與討論--------------------------------------------42
4-1變因對銀奈米微粒之影響------------------------------------42
4-1-1油相為isooctane-----------------------------------------42
4-1-2油相為MMA-----------------------------------------------43
4-1-3 isooctane與MMA當油相之比較-----------------------------45
4-2銀奈米粒子對光纖棒的影響----------------------------------68
4-3結像圖----------------------------------------------------73
4-4光纖棒的相分離--------------------------------------------75
第五章 結論--------------------------------------------------78
參考文獻-----------------------------------------------------79
1.劉瑞祥編譯, “基礎光學纖維”, 復文書局, 1986
2.賴耿陽、蘇品書編撰, “塑膠光纖應用技術”, 復漢出版社, 1988
3.蘇品書編撰, “超微粒子材料技術”, 復漢出版社, 1989
4.李明淵編著, “光纖通信概論”, 全華科技圖書, 1992
5.廣磁資訊公司編著, “通訊寶典(六) 光纖通信”, 廣磁資訊公司, 1994
6.吳曜東編著, “光纖通訊系統原理與應用”, 全欣資訊圖書公司, 1994
7.莊萬發編撰, “超微粒子理論應用”, 復漢出版社, 1995
8.賴耿陽編譯, “光放大器與其應用”, 台灣復文興業, 1995
9.王誌麟、呂明峰、鄧俊修編譯, “光纖通訊”, 高立圖書公司, 1998
10.A. Henglein, Chem. Rev., 89, 1861, 1989
11.P. Calandra, M. Goffredi, V. T. Liveri, Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 160, 9, 1999
12. C. Petit, P. Lixon, M. P. Pileni, J. Phys. Chem., 94, 1598, 1990
13. H. F. Eicke, J. C. W. Shepherd and A. Steinemann, J. Colloid Interf. Sci.,
56, 168, 1976
14. J. H. Fendler, Chem. Rev., 87, 877, 1987
15. P. D. I. Fletcher, A. M. Howe, and B. H. Robinson, J. Chem. Soc., Faraday
Trans. I., 83, 985, 1987
16. E. M. Egorova, A. A. Revina, Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 168, 87, 1999
17. F. Debuiqne, L. Jeunieau, M. Wiame, and J. B. Nagy, Langmuir, 16, 7605, 2000
18. L. M. Gan, T. H. Chieng, C. H. Chew, S. C. Ng, Langmuir, 10, 4022, 1994
19. N. Moumen, M. P. Pileni, R. A. Mackay, Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 151, 409, 1999
20. P.-Y. Silvert, R. Herera-Urbina, N. Duvauchelle, V. Vijayakrishnan, and K.
Tekaia-Elhsissen, J. Mater. Chem., 6, 573, 1996
21. P. B. Rahul and C. K. Kartic, Langmuir, 13, 6432, 1997
22. T. D. Li, L. M. Gan, C. H. Chew, W. K. Teo and L. H. Gan, Langmuir, 12,
5863, 1996
23. M. B. Johan and M. C. Per, J. Colloid Interface Sci., 163, 289, 1994
24. T. Hirai, T. Watanabe and I. Komasawa, J. Phys. Chem. B, 104, 8962, 2000
25. N. Moumen, M. P. Pileni, R. A. Mackay, Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 151, 409, 1999
26. P. B. Rahul and C. K. Kartic, Langmuir, 16, 905, 2000
27. M. Kawahara, S. Ogawa, S. Ichikawa, Surf. Sci., 334, 1259, 1995
28. C. Petit, P. Lixon, and M. P. Pileni, J. Phys. Chem., 97, 12974, 1993
29. Y. Yoshimura, I. Abe, M. Ueda, K. T. Hori and Z. A. Schelly, Langmuir 16,
3633, 2000
30. P. Barnickel, A. Wokaum, W. Sager and H. F. Eicke, J. Colloid Interface
Sci., 148 (1), 80, 1992
31. T. Hirai, H. Okubo, and I. Komasawa, J. Colloid Interface Sci., 235, 358,
2001
32. F. Debuigne, J. Cuisenaire, L. Jeunieau, B. Masereel, and J. B. Nagy, J.
Colloid Interface Sci., 243, 90, 2001
33. L. V. H. Dirk, G. K. Walter, and F. Z. Charles, Langmuir, 17, 3128, 2001
34. P. C. Joanna, E. M. Michael, B. T. Jason, and B. R. Christopher, J. Phys.
Chem. B, 105, 2297, 2001
35. N. Pradhan, A. Pal, T. Pal, Colloids and Surfaces A: Physicochemical and
Engineering Aspects, 196, 247, 2002
36. Y. Koike, H. Hatanaka, and Y. Ohtsuks, Appl. Opt., 23 (11), 1779, 1984
37. Y. Ohtsuka, and Y. Koike, Appl. Opt., 24 (24), 4316, 1985
38. S. Eguchi, H. Asano, A. Kannke, and M. Ibamoto, Jap. J. Appl. Phys., 28
(12), L2232, 1989
39. Y. Koike, Y. Kimoto, and Y. Ohtsuka, Appl. Opt., 21 (6), 1057, 1982
40. Y. Koike, and Y. Ohtsuka, Appl. Opt., 23 (11), 1779, 1984
41. Y. Koike, Y. Takezawa, and Y. Ohtsuka, Appl. Opt., 27, 3, 486, 1988
42. Y.Koike, N. Tanio, E. Nihei, and Y. Ohtsuka, Polym. Eng. Sci., 17, 1200,
1989
43. A. Tagaya, Y. Koike, T. Kinoshita, E. Nihei, T. Yamamoto, and K. Sasaki,
Appl. Phys. Lett., 63 (7), 883, 1993
44. T. Yamamoto, K. Fuji, A. Tagaya, E. Nihei, Y. Koike and K. Sasaki, Journal
of Nonlinear Optical Physics and Materials, 5, 1, 73, 1996
45. A. Tagaya, S. Teramoto, E. Nihei, K. Sasaki, and Y. Koike, Appl. Opt., 36,
3, 572, 1997
46. J. H. Liu and H. T. Liu, Polymer, 38, 5, 1251, 1997
47. J. H. Liu and H. T. Liu, J. Appl. Polym. Sci., 64, 849, 1997
48. I.-S. Sohn and C.-W. Park, Ind. Eng. Chem. Res., 40, 3740, 2001
49. Y. Koike, E. Nihei, N. Tanio, Y. Ohtsuka, Appl. Opt., 29, 18, 2686, 1990
50. Y. Ohtsuka, E. Nihei, and Y. Koike, Appl. Phys. Lett., 57 (2), 120, 1990
51. Y. Koike, A. Asakawa, S. P. Wu, and E. Nihei, Appl. Opt., 34, 22, 4669, 1995
52. S. P. Wu, E. Nihei, and Y. Koike, Appl. Opt., 35, 1, 28, 1995
53. A. Costela, F. Floride, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J.
M. Figuera, and R. Saatre, Appl. Phys. B, 60, 383, 1995
54. A. Maslyukov, S. Sokolov, M. Kaivola, K. Nyholm, and S. Popov, Appl. Opt., 34, 9, 1516, 1995
55. G. D. Peng, P. L. Chu, Z. Xiong, T. Whitbred, and R. P. Chaplin, Opt.
commun., 129, 353, 1996
56. J. Zubia and J. Arrue, Optical Fiber Technology, 7, 101, 2001
57. Jap. Pat. 1-152107, 1989
58. 郭正亮, “訊號傳輸用塑膠光纖”, 化工資訊, 12, 1988
59. 李炳耀, “光纖通訊在台灣的建設”, 光訊, 29, 1991
60. 陳文章, “高分子在光學上的應用”, 化工資訊, 6, 1993
61. 史宗淮, “微粒製程技術簡介”, 化工, 42 (6), 28, 1995
62. 廖建勛, “奈米材料的發展動態”, 化工資訊, 2, 1998
63. 魏碧玉、賴明雄, “奈米材料在光學上的應用及其製造法”, 工業材料, 9, 1999
64. 林景正、賴宏仁, “奈米材料技術與發展趨勢”, 工業材料, 9, 1999
65. 廖建勛, “分子材料之發展與應用”, 化工資訊, 10, 1998
66. 何耀宗, “光通訓產業應用材料簡介”, 工業材料, 5, 2001
67. 周政達, “二階段溶液滲透法製作集束性光學纖維棒之研究”, 國立成功大學碩士論文, 1990
68. 陳堯明, “以膨潤膠法製作集束性塑膠光纖棒之研究”, 國立成功大學碩士論文, 1995
69. 陳鎮華, “逆微胞系統中製備銀超微粒子之研究”, 國立成功大學碩士論文, 1997
70. 陳俊郎, “離心擴散聚合法製作集束性塑膠光纖棒之特性研究”, 國立成功大學碩士論文, 1998
71. 王宏宇, “集束性光學元件之製作及特性探討”, 國立成功大學碩士論文, 1999
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top