跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林子平
研究生(外文):Tzu-Ping Lin
論文名稱:以感應耦合電漿系統成長類鑽碳奈米複合薄膜
論文名稱(外文):Deposition of Diamond-Like Carbon Nanocomposite Films by Inductively-Coupled-Plasma System
指導教授:吳季珍
指導教授(外文):Jih-Jen Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:105
中文關鍵詞:複合薄膜奈米粒子類鑽碳
外文關鍵詞:nanoparticlenanocompositeDLC
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1014
  • 評分評分:
  • 下載下載:277
  • 收藏至我的研究室書目清單書目收藏:1
類鑽碳薄膜具有與鑽石相近的性質,如高硬度、低摩擦係數、表面平滑、高熱傳導度、耐化學腐蝕等優良性質,所以常應用於磨耗、機械性質等方面。
由於類鑽碳膜的成長機制與鍍膜離子之能量有關,因此常有著內應力太大的問題。所以要成長品質良好的類鑽碳膜並不容易。在本研究中,利用HMDSN、HMDSO、HMDS為成長源,以感應耦合式電漿進行解離,並以脈衝式的基板偏壓獨立控制鍍膜離子的入射能量,以沉積類鑽碳奈米複合薄膜。
在分析方面,主要利用掃瞄式電子顯微鏡進行膜厚分析,X光光電子儀進行表面鍵結分析,拉曼光譜進行結構性質分析,並利用穿隧式電子顯微鏡進行微結構分析,並利用接觸角來進行表面能的分析,與使用UV-Vis光譜做為光學能隙的分析。
由穿隧式電子顯微鏡的分析,利用HMDSN、HMDSO與HMDS為成長源所沉積的類鑽碳膜,可以發現膜中均包含著奈米粒子。由於使用的成長源組成不同,所包含的奈米粒子也不相同。其組成藉由能量分散光譜儀進行定性分析,並由擇區電子繞射圖分析其結晶狀態,以獲得奈米粒子的結構。
由分析的結果顯示:以含有Si-C-N、Si-C-O與Si-C成份的有機金屬化合物做為成長源,所沉積的類鑽碳奈米複合膜,可以沉積較厚的膜厚,同時其表面能遠小於利用CH4成長的類鑽碳膜,使得其表面呈現親水特性。
Diamond-Like Carbon (DLC) films that are like diamond exhibit excellent characteristics, such as high hardness, low friction coefficient, smooth surface, high heat conductivity, and chemical erosion resistivity. It is always applied on wear, mechanic properties etc.
According to the growth mechanism of DLC, the ion energy influences the properties of film. So, DLC films have high compressive stress. Therefore, it is difficult to deposit high quality DLC films. In this study, we used hexamethyldisilazane (HMDSN), hexamethyldisiloxane (HMDSO), and hexamethyldisilane (HMDS) as carbon source, that ionized by inductively-coupled-plasma (ICP). Pulsed substrate bias independently controlled the incident energy of ions.
For analysis, we use scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS) to measure film thickness and bonding energy, respectively. Raman spectroscopy was used to characterize the structure and the microstructure was analyzed by tunneling electron microscope (TEM). The surface tension was measured by contact angle and optical band-gap was analyzed by UV-Vis spectroscopy.
From analysis of TEM, it shows that nanoparticles are imbedded in DLC films depositing by HMDSN, HMDSO and HMDS. The nanoparticles are varied with different source. The composition of nanoparticles was analyzed by electron dispersive spectroscopy (EDS), and structure was characterized by selected area diffraction (SAD) pattern.
The results of analysis show that DLC nanocomposite films can be useful to deposit thicker films by organometallic compounds like Si-C-N, Si-C-O and Si-C. Its surface energy is less than DLC films depositing by CH4, and shows hydrophilic feature.
中文摘要..............................Ⅰ
英文摘要..............................Ⅱ
誌謝..................................Ⅲ
目錄..................................Ⅳ
表目錄................................Ⅶ
圖目錄................................Ⅷ
第一章 緒論............................1
1-1 前言...............................1
1-2 奈米材料之特性與及其應用...........2
1-3 奈米材料的製作技術.................5
1-4 複合材料之特性.....................6
1-5 研究背景與目的.....................7
第二章 理論基礎.......................11
2-1 電漿化學..........................11
2-2 離子被覆..........................18
2-2-1 離子被覆系統簡介................18
2-2-2 離子轟擊效應....................19
2-3 感應耦合式電漿輔助離子蒸鍍系統法..21
2-3-1 高密度電漿......................21
2-3-2 ICP產生原理.....................22
2-4 類鑽碳膜..........................24
2-4-1 類鑽碳膜之組成..................24
2-4-2 類鑽碳膜之成長機制..............28
2-4-3 類鑽碳改質膜....................32
2-5 分析儀器之原理....................34
2-5-1 拉曼光譜儀......................34
2-5-1~1 拉曼光譜於類鑽碳上的應用......36
2-5-2 化學分析電子光譜儀..............40
2-5-3 掃瞄式電子顯微鏡................41
2-5-4 穿隧式電子顯微鏡................43
2-5-5 接觸角儀........................44
第三章 實驗參數與研究方法.............46
3-1 實驗流程..........................46
3-2 實驗裝置..........................47
3-2-1 電漿產生裝置....................48
3-2-2 基板座裝置......................49
3-2-2~1 基板座之設計與冷卻系統........49
3-2-2~2 基板溫度量測系統..............49
3-2-2~3 基板偏壓裝置..................49
3-2-3 真空及抽氣系統..................51
3-2-3~1 抽氣系統......................51
3-2-3~2 壓力檢測系統..................51
3-2-4 反應氣體輸送裝置................52
3-3 實驗材料..........................53
3-3-1 實驗氣體........................53
3-3-2 基板材料........................54
3-4 實驗操作..........................55
3-4-1 基板前處理......................55
3-4-2 實驗操作步驟....................55
3-4-2~1 清理基板......................55
3-4-2~2 奈米複合材料的沈積............56
3-5 分析與鑑定........................57
3-5-1 表面型態觀察....................57
3-5-2 薄膜品質分析....................57
3-5-3 薄膜組成及鍵結型態分析..........57
3-5-4 微結構穿隧式電子顯微鏡分析......58
3-5-5 接觸角與表面能分析..............58
第四章 結果與討論.....................59
4-1 結構分析..........................60
4-1-1 膜厚分析........................60
4-1-2 拉曼分析........................64
4-1-3 鍵結分析........................72
4-1-3~1 HMDSN的ESCA鍵結分析...........72
4-1-3~2 HMDSO的ESCA鍵結分析...........72
4-1-3~3 HMDS的ESCA鍵結分..............73
4-1-4 穿隧電子顯微鏡分析..............80
4-2 表面能分析........................87
4-3 光學能隙分析......................90
第五章 結論...........................96
第六章 參考文獻.......................98
自述.................................105
1. 廖建勛,化工資訊第12卷第2期,民87.02,頁20-27。
2. 牟中原、陳家俊,科學發展第28卷第4期,民89.04,頁281-288。
3. 林景正、賴宏仁,工業材料第153期,民88.09,頁102-108。
4. 蘇品書,超微粒子材料技術,民88.06。
5. 呂英治、洪敏雄,儀器新知第22卷第6期,民90.06,頁21-26。
6. 林景正,電子月刊第6卷第3期,民89.03,頁206-225。
7. James P. Schaffer, Ashok Saxena, Stephen D. Antolovich, Thomas H. Sanders, Steven B. Warner, “The Science and Design of Engineering Materials”, The McGraw-Hill Companies, (1999)Second Edition, Chapter14.
8. 錢國基,產業經濟第201卷,民87.05,頁105-109。
9. 張瑞發,化工資訊,4 (1993) 68。
10. V.F. Dorfman, Thin Solid Films 212 (1992) 267.
11. S. Vepřek, S. Reiprich, Thin Solid Films, 268(1995)64-71.
12. S. Vepřek, S. Reiprich, Li Shizhi, Appl. Phys. Lett., 66(20), (1995) 2640-2642.
13. S. Vepřek, M. Haussmann, S. Reiprich, Li Shizhi, J. Dian, Surf. Coat. Technol.,86-87(1996)394-401.
14. S. Vepřek, J. Vac. Sci. Technol. A, 17(5), (1999)2401-2420.
15. 李豐明,自由中國之工業第90卷第2期,民89.02,頁1-20。
16. J. Robertson, “Properties of Diamond-Like Carbon,” Surf. Coat. Technol., 50 185-203 (1992)
17. A. Grill, “Review of the Tribology of Diamond-Like Carbon,” Wear, 168 143-153 (1993).
18. C. Y. Hsu, L. Y. Chen and F. C. N. Hong, “Properties of Diamond-Like Carbon Films Deposited by Ion Plating with a Pulsed Substrate Bias,” Diamond Relat. Mater., in press.
19. J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle and K. L. Saenger, “Vapor Deposition Processes for Amorphous Carbon Films with sp3 Fractions Approaching Diamond,” J. Appl. Phys., 70 [3] 1706-1711 (1991).
20. A. Grill and V. Patel, “Tribological Properties of Diamond-Like Carbon and Related Materials,” Diamond Relat. Mater., 2 597-605 (1993).
21. S. S. Camargo, Jr, A.L. Baia Neto, R.A. Santos, F.L. Freire,Jr, R. Carius, F. Finger, Diamind and Related Materials 7 (1998) 1155-1162.
22. Weng-Jin Wu, Min-Hsiung Hon, Surface and Coating Technology 111 (1999) 134-140.
23. H.L. Bai, E.Y. Jiang, Thin Solid Films, 353 (1999) 157-165.
24. M. Grischke, A. Hieke, F. morgenweck, H. Dimigen, Diamond and Related Materials, 7(1998)454-458.
25. J. Meneve, R. Jacobs, L. Eersels, J. Smeets, E. Dekempeneer, Surface and Coating Technology 62 (1993) 577.
26. M.A. Tamor, in:Applications of Diamond Films and Related Materials, 3rd Int. Conf., 1995, p.691.
28. C.P. Klages, R. Memming, Mater. Sci. Forum 52-53 (1989) 609.
29. M. Grischke, K. Bewilogua, K. Trojan, H. Dimigen, Surf. Coatings Technol. 74-75 (1995) 739.
30. M. Hakovirta, R. Verda, X.M. He, M. Nastasi, Diamond and Related Materials, 10(2001)1486-1490.
31. V.N. Inkin, G.G. Kirpileko, A.A. Dementjev, K.I. Maslakov, Diamond and Related Materials, 9(2000)715-721.
32. Chi-Lung Chang, Da-Yung Wang, Diamond and Related Materials, 10(2001)1528-1534.
33. Chi-Lung Chang, Da-Yung Wang, Thin Solid Films, 392(2001)11-15.
34. Liang-Yih Chen, Franklin Chau-Nan Hong, Diamond and Related Materials, 10(2001)1058-1062.
35. 曾煥華,電漿的世界,第一章,銀禾文化事業有限公司,台北台灣,1987。
36. 洪昭南,電漿反應器,化工技術,第三卷,第三期,124-135,1995。
37. Brian Chapman, Glow Discharge Processes, John Wiley & Sons, Inc, United State of America,1980,Chapter 5.
38. J. R. Roth, Industrial Plasma Engineering-Volume 1 : Principles, Institute of Physics Publishing, London, 1995.
39. 陳寶清,真空表面處理工學,第三篇,傳勝出版社,台北台灣,1992。
40. 陳良益,成功大學化工所碩士論文,1998。
41. L.W. Dini, Metal Fishing, 1993, p15.
42. T.Tagkagi, J.Vac. Sci. Technol., A2 (1984) 382.
43. A.A. Voevodin, M.S. Donley, Surf. Coat. Technol., 82 (1996) 199.
44. K. Morikawa, Heat Treatment (Japanese), 31 (1987) 3.
45. 艾啟峰,真空科技,3 (1992) 10。
46. Oleg A. Popov, High Density Plasma sources Design, Physics and performance, Noyes Publication, New Jersey, U.S.A.
47. 陳熹棣,高週波基礎理論與應用,第三篇,全華科技股份有限公司,台北台灣,1995。
48. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, Chapter 2, John Wiley & Sons, Canada, 1991.
49. 余樹貞,晶體之結構與性質,第十二章,渤海堂文化公司,台北台灣,1993。
50. J. C. Angus and C. C. Hayman, “Low-Pressure, Metastable Growth of Diamond and Diamondlike Phases,” Science, 241 913-921 (1998).
51. J.Roberson, Surface and Coating Technology 50 (1992) 185-203.
52. C. D. Martino, F. Demichelis and A. Tagliaferro, “Determination of the sp3/sp2 Ratio in a-C:H Films by Infrared Spectrometry Analysis,” Diamond Relat. Mater., 4 1210-1215 (1995).
53. I. Garnev and V. Orlinov, “Evaluation and Parametric Modeling of Abrasive Wear Resistance of Ion-Plated Thin DLC Films,” Diamond Relat. Mater., 4 1041-1045 (1995).
54. J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle and K. L. Saenger, “Vapor Deposition Processes for Amorphous Carbon Films with sp3 Fractions Approaching Diamond,” J. Appl. Phys., 70 [3] 1706-1711 (1991).
55. P. C. Kelires, C. H. Lee and W. R. Lambrecht, “Structural Studies and Electronic Properties of Diamond-Like Amorphous Carbon,” J. Non-Cryst. Solids, 164/166 1131-1134 (1993).
56. J. Robertson, “Deposition Mechanism of Cubic Boron Nitride,” Diamond Relat. Mater., 5 519-524 (1996).
57. J. Robertson, “The Deposition Mechanism of Diamond-Like a-C and a-C:H,” Diamond Relat. Mater., 3 361-368 (1994).
58. J. Robertson, “Deposition Mechanism of a-C and a-C:H,” J. Non-Cryst. Solids, 164/166 1115-1118 (1993).
59. P. C. Kelires, C. H. Lee and W. R. Lambrecht, “Structural Studies and Electronic Properties of Diamond-Like Amorphous Carbon,” J. Non-Cryst. Solids, 164/166 1131-1134 (1993).
60. C. Z. Wang and K. M. Ho, “Structure, Dynamics, and Electronic Properties of Diamondlike Amorphous Carbon,” Phys. Rev. Lett., 71 [8] 1184-1187 (1993).
61. C. Venkatraman, D.Kester, A. Goel, D. Bray, ASM Materials Week, October, 1995.
62. D. Neerinck, P. Persoone, A. Goel, C. Venkatraman, D.Kester,C. Halter, D. Bray, in:Proc. Trends Applications Thin Films ’96, Apil,1996,Colmar,France, p. 67.
63. Xing-zhao Ding*, Fu-min Zhang, Xiang-Huai Liu et al, Thin Solid Films, 346(1992) 82-85.
64. D. Neerinck, P. Persoone, M. Sercu, A. Goel, C. Venkatraman, D. Kester, C. Halter, P. Swab, D. Bray, Thin Solid Films, 317(1998) 402-404.
65. C. T. Lin, F. Li, and T. D. Mantel, J. Vac. Sci. Technol. A 17(3), May/Jun 1999,735-740.
66. V.F. Dorfman, B.N. Pypkin, Surf. Coatings Technol. 48 (1991) 193.
67. M.Grischke, A.Hieke, F. Morgenweck, H.Dimigen, Diamond and Related Materials 7 (1998) 454-458.
68. T. Hioki, K. Okumura, Y. Itoh, S.Hibi and S. Noda, Surf. Coatings Technol. 65 (1994) 106-111.
69. 何以侃主編,儀器分析,文京圖書有限公司,台北台灣,1997。
70. 李敬二,林宗義審議,儀器分析,美雅出版股份有限公司,台北台灣,1984。
71. I. Watanabe, T. Matsushita and K. Sasahara, Jpn. J. Appl., Phys. 31 (1992) 1428.
72. Ryozo Nonogaki, Suzuya Yamada, Tsutomu Araki, and Tetuya Wada, J. Vac. Sci. Technol. A 17(3), May/Jun 1999,731-734.
73. F.Tuinstra and J.L. Koenig, J. Chem. Phys., 53 [3] (1970) 1126-1130.
74. S.A. Solin, Physica B, 99 (1980) 443-452.
75. M. A. Capano, N. T. McDeutt, R. K. Singh and F. Qian, “Characterization of Amorphous Carbon Thin Films,” J. Vac. Sci. Technol. A, 14 [2] 431-435 (1996).
76. M.A. Tamor and W. C. Vassel, J. Appl. Phys., 76(6) (1994) 3823.
77. H.C. Tsai, D.B. Bogy, M.K. Kundmann, D.K. Veirs, M.R. Hilton and S.T. Mayer, J. Vac. Sci. Technol.A,6 [4] (1998) 2307-2315.
78. 何主亮,常挽瀾,陳育智,真空科技,第9卷,第二期,34-35,1996。
79. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S.R.P. Silva, J. Appl. Phys., 80 [1] (1996) 440-447.
80. R. Vuppuladium, H.E. Jackson and R.L.C., J. Appl. Phys., 77 [6] (1995) 2714-2718.
81. 潘扶民,科儀新知,第十九卷,第二期,1997,118-127。
82. 李驊登,掃瞄式電子顯微鏡之原理及功能(上),科儀新知,第十一卷,第一期,44-52,1989。
83. 陳力俊,材料電子顯微鏡學,第十一章,行政院國家科學委員會精密儀器發展中心,新竹台灣,1984。
84. 陳力俊,材料電子顯微鏡學,第十二章,行政院國家科學委員會精密儀器發展中心,新竹台灣,1984。
85. 高至鈞、鮑忠興,工業材料第153卷,民88.09,頁102-108。
86. J. R. Dann, J. of colloid and Interface Science, 32(2)(1970)302.
87. E. Lugscheider, K. BobZin, M. Möller, Thin Solid Films, 355-356 (1999)367-373.
88. 許嘉元,成功大學化工所博士論文,1998。
89. 呂登復,實用真空技術,國興出版社,新竹台灣,1993。
90. A. C. Ferrari, J. Robertson, Physical Review B, 61(20)(2000)95-107.
91. Fortunato Neri, Sebastiano Trusso, Cirino Vasi, Francesco Barreca, Paolo Valisa, Thin Solid Films, 332(1998)290.
92. N. Tomozeiu, A. Hart*, B. Kleinsorge, W. I. Milne, Diamond and Related Materials, 8(1999)522.
93. S. R. P. Silva, Rusli, K. P. Homewood, G. A. J. Amaratunga, Journal of Non-Crystalline Solids,227-230(1998)1137-1141.
94. G. Jungnickel, Th. Köhler, Th. Frauenheim, M. Haase, P. Blaudeck, U. Stephan, Diamond and Related Materials,5(1996)175.
95. J. Robertson, Diamond and Related Materials,4(1995)297.
96. K. Chew, Rusli, S. F. Yoon, J. Ahn, Q. Zhang, V. Ligatchev, E. J. Teo, T. Osipowicz, F. Watt, Journal of Applied Physics,91(7)(2002)4319.
97. D. R. McKenzie, Y. Yin, N. A. Marks, C. A. Davis, B. A. Pailthorpe, G. A. J. Amaratunga and V. S. Veerasamy, Diamond and Related Materials,3(1994)353.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top