跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 08:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王凱弘
研究生(外文):Kai-Hung Wang
論文名稱:以有機產物為溶劑之相間轉移催化技術-合成丙烯基苯基醚
論文名稱(外文):Phase Transfer Catalysis with Organic Product as Solvent-Synthesis of Allyl Phenyl Ether
指導教授:翁鴻山翁鴻山引用關係
指導教授(外文):Hung-Shan Weng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:114
中文關鍵詞:液-液-固三相反應三液相相間轉移催化技術
外文關鍵詞:liquid-liquid-solid triphase reactiontri-liquid phasephase transfer catalysis technique
相關次數:
  • 被引用被引用:5
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
  本研究使用兩種相間轉移觸媒,一種是可溶性的四級銨鹽(溴化四正丙基銨Pr4NBr、溴化四正丁基銨Bu4NBr);另一種是以氯甲基化聚苯乙烯為擔體,將三正丁基胺固定於其上的不溶性高分子擔體觸媒。以有機相產物丙烯基苯基醚(ROPh)為溶劑,透過三液相與液-液-固兩種不同的相間轉移催化技術,催化有機相反應物丙烯基溴及水相反應物酚化鈉合成有機相主產物丙烯基苯基醚。並評估以續流攪拌式反應器(CFSVR)進行該反應之可行性及不同催化技術的優劣性。若能將丙烯基溴完全轉化為丙烯基苯基醚,則可不需經過分離及純化的步驟便能得到高純度的有機產物。如此不僅可節省操作成本且不會產生廢溶劑處理的問題,合乎目前「綠色化學」的要求。
  本論文共分為三個部份:第一部份是先以Pr4NBr與Bu4NBr兩種四級銨鹽觸媒進行形成第三液相的實驗,藉以評估續流式操作的可行性,並選擇Pr4NBr為相間轉移觸媒,以續流攪拌式反應器在不同操作條件下進行三液相催化反應;第二部份是以自行製備的高分子擔體觸媒進行批式液-液-固反應,探討不同操作條件對反應的影響;第三部份則是將三液相與液-液-固兩種不同催化系統作一綜合性的比較。
  在第一部份以三液相方式進行醚化反應之研究中,先探討形成三液相系統所需ROPh之最適當體積、不同Pr4NBr莫耳分率[Pr4NBr/(Pr4NBr + NaOPh)之莫耳比]及以Pr4NBr或Bu4NBr為觸媒進行重複批次操作對觸媒在三液相分布的影響,再探討改變攪拌速率、進料流率、反應溫度、進料莫耳比、萃取器段數以及觸媒種類對續流式操作的影響。由實驗結果可知:以Pr4NBr為觸媒且ROPh與純水用量相等時所形成的三液相系統較適合續流式操作。當Pr4NBr莫耳分率為0.5時,可將大部分觸媒集中在第三液相。雖然Pr4NBr催化活性較Bu4NBr略低,但以其為觸媒進行重複批次操作時的觸媒流失率較低。當攪拌速率超過600rpm時,可忽略相間質傳阻力對反應的影響。溫度愈高,轉化率愈高且第三液相愈穩定。為了防止第三液相因攪拌而流失的現象,我們在續流攪拌式反應器下方裝設填充床或擋板,並觀察兩者之效果。結果發現:裝設填充床可維持較低的水相觸媒流失率,但由於第三液相液滴容易滯留在填充床下方無法返回反應區域進行反應,因此擋板較適合續流式操作。萃取器段數愈多,萃取效果愈好,但若有機相出料中Pr4N+含量不多,則兩者萃取效果差不多。等莫耳進料比不等莫耳進料能維持較低的觸媒流失率;由於Pr4NBr親油性較低,使其較Bu4NBr適合當作相間轉移觸媒進行本三液相催化反應。
  在第二部份以液-液-固系統進行醚化反應的研究中,探討攪拌速率、油水體積比、溫度、觸媒用量、水相及有機相反應物用量、鹽類種類、三正丁基胺用量以及觸媒穩定性等變因對反應的影響。由實驗結果得知:攪拌速率超過200rpm則可忽略外質傳阻力對反應的影響。等體積的油、水兩相,可獲得較佳的丙烯基溴轉化率。提高溫度可增加轉化率,但溫度太高會使丙烯基溴揮發且造成觸媒劣化,因此50℃為系統較適當溫度。添加5.4 meq觸媒的催化效益較經濟。酚化鈉用量相對於丙烯基溴過量的情況下,反應是擬一階不可逆反應(Pseudo-first-order irreversible reaction)進行反應,此時丙烯基溴轉化率較高。鹽類會抑制觸媒的活性,抑制程度的多寡與用量有關;高分子擔體上的活性基會因Hofmann elimination反應而脫落以及機械攪拌力對觸媒結構造成破壞,導致擔體觸媒催化活性下降。從擔體上脫落的三正丁基胺能與有機相反應物作用形成四級銨鹽而具有催化活性,但活性較其固定在擔體上時低。
  在第三部份中,我們分成催化效益、催化穩定性、續流式操作難易度及觸媒製備程序等四項來進行討論三液相與液液固催化系統的差異性。(1)三液相催化系統中之分散相在高速攪拌下可分散成極小之液滴,界面積較大,觸媒可與反應物充分接觸,所以催化效果較好,再加上其觸媒價格較三相觸媒便宜許多,因此經濟效益也較高。(2)三液相觸媒雖會因溶解於油、水相中而隨出料流失,但其催化穩定性仍較三相觸媒高。(3)液-液-固催化系統由於不需萃取有機相中的觸媒,因此續流式操作較簡單。然而(4)高分子擔體觸媒製備過程繁瑣,且再現性不佳。
  Two phase transfer catalysis techniques were employed in this study, one is tri-liquid-liquid-phase catalysis technique in which soluble tetra-ammonium salt (tetra-n-propylammonium bromide Pr4NBr and tetra-n-butylammonium bromide Bu4NBr) were used as the phase transter catalysts, the other is liquid-liquid-solid (i.e. triphase) catalysis technique in which insoluble polymer-supported catalyst was utilized. In the preparation of the polymer-supported catalyst (triphase catalyst) tributylamine was immobilized on chloromethylated polystyrene polymer. With organic product allyl phenyl ether (ROPh) as solvent, we made use of allyl bromide (the organic reactant, RBr) and sodium phenolate (the aqueous reactant, NaOPh) to synthesize allyl phenyl ether. By this way, we can get the pure allyl phenyl ether without separation and purification if all the allyl bromide is converted. Thus, we can save the operation cost, and need not to dispose the waste solvent. It will correspond with the ‘green chemistry’. At the end of this study, the feasibilities and two catalysis techniques were evaluated and compared by operating in continuous-flow stirred vessel reactor (CFSVR).
  This thesis is composed of three parts. In the first part, the feasibilities of using Pr4NBr and Bu4NBr as the phase transfer catalysts for the tri-liquid-phase reaction in a continuous-flow reactor were evaluated basing on whether a third liquid phase will be formed or not. Then, using Pr4NBr as the catalyst, the tri-liquid-phase catalytic reaction was carried out under different operating conditions by means of a continuous-flow stirred vessel reactor. The performance of prepared polymer-supported catalyst was evaluated by using it as a triphase catalyst repeatedly in a batch reactor under different operating conditions in the second part. The tri-liquid-phase and liquid-liquid-solid catalytic systems were compared in the last part.
  In the first part, the etherification reaction was carried out with the tri-liquid-phase method, the effects of operating variables, including the most suitable volume of allyl phenyl ether for helping the tri-liquid-phase and mole fraction of Pr4NBr on the conversion of RBr, and the repeated batch operations on the distribution of Pr4NBr or Bu4NBr in various phase were investigated first. After that we investigate the effects of agitation speed, inlet flow rate, reaction temperature, inlet molar ratio of reactant, the number of stages in the extractor and the kinds of catalysts on the performance of CFSVR. Experiment results show that the tri-liquid-phase catalytic system that was formed by the using Pr4NBr as a catalyst and equal amount of allyl phenyl ether and pure water was suitable for being operated in a continuous-flow reactor. When the mole fraction of Pr4NBr was 0.5, most of the catalysts concentrate on the third-liquid phase. Although the catalytic activity of Pr4NBr is lower than Bu4NBr, however, its loss rate is lower when both were used as the catalysts in repeated batch operations. When total volume of inlet fluid is larger than the volume of reactor, the system can reach a steady state. The interfacial mass transfer resistance can be neglected when the agitation speed is beyond 600 rpm. A higher conversion of RBr can be obtained when the inlet flow rate is 1 ml/min. The higher the temperature is, the higher the conversion gets and the more stable more stable the third-liquid phase is. In order to prevent the loss of that the third-liquid phase resulting from agitation, we installed a packed bed or baffles under the continuous-flow reactor, and observed individual. The result shows that the reactor with a packed bed can keep the catalyst loss rate of aqueous being lower. However, the droplet of the third-liquid phase easily stayed under the packed bed rather than go back to the reaction area. Therefore, the reaction is more appropriately carried out in the continuous-flow reactor that has baffles. The more stages the extractor has, the better the effect of extraction is. The effect of extraction will be similar if there is little amount of Pr4N+ among organic phase outlet. Feeding with equal organic-to-aqueous reactant molar ratio can keep the catalyst loss rate lower than unequal reactant molar ratio inlet. Because of lower lipophilicity, Pr4NBr was more suitable to be used as the phase transfer catalyst to run this tri-liquid-phase catalytic reaction than Bu4NBr.
  In the second part, the etherification reaction was carried out with the liquid-liquid-solid method. Several factors which influence the conversion of RBr is discussed. The factors include agitation speed, volumetric ratio of organic solvent and water, reaction temperature, amount of catalysts, amount of aqueous and organic reactants, amount of salts, amount of tri-n-butylamines and stability of catalyst. Experimental results show that the interfacial mass transfer resistance can be neglected when the agitation speed is beyond 200 rpm. High conversion of RBr will be obtained when the volume of organic solvent and water are equal. Raising the temperature can promote the conversion. But RBr will vaporize and the catalyst will be worsened when the temperature is too high. As a result, the appropriate temperature is 50℃. An amount of 5.4 meq catalyst is economic and cost-effective. When using more NaoPh than RBr, the reaction is pseudo-first-order irreversible reaction. As this time, a higher conversion of RBr comes into effect. Existence of salts restrains the activity of catalyst. The extent of inhibition depends on the amount of salts. Two reasons will cause the decrease of catalyst activity. One is that the activity site on the polymeric support will fall down because of Hofmann elimination reaction. The other is that the force of agitation will destroy the structure of catalyst. The tri-n-butylamine which falls from support can react with organic reactant and form the tetra-alkylamine salt. The tri-n-butylamine salt has catalytic activity but is lower than the form that the tri-n-butylamine fixes on the support.
  The performances of the tri-phase system and liquid-liquid-solid system are compared in the last part. The comparison is based on four items, namely, catalytic effect, stability of catalysts, the operation of continuous-flow reactor and the procedure of preparing catalysts. Because of the high dispersion and bigger interfacial area, the tri-liquid phase catalyst has better catalytic effect. On the other hand, the tri-liquid phase catalyst is cheaper than the triphase catalyst hence it is more cost-effective. Although the tri-liquid phase catalyst will dissolve in organic and aqueous phase and flow away with outlet, the stability of catalyst is still better than triphase catalyst. The operation of continuous-flow reactor with liquid-liquid-solid catalyst is simpler due to the fact that we don’t have to extract the catalyst from the organic phase. The procedure of preparing polymer-supported catalysts is complicated and the reproducibility is not as well as the formation of a third liquid phase in the tri-liquid phase system.
IX
中文摘要---------------------------------------------------------------------------------I
英文摘要---------------------------------------------------------------------------------Ⅳ
目錄-------------------------------------------------------------------------------------Ⅸ
表目錄-----------------------------------------------------------------------------------ⅩⅢ
圖目錄-----------------------------------------------------------------------------------ⅩⅣ
符號-------------------------------------------------------------------------------------ⅩⅦ

第一章緒論----------------------------------------------------------------------------1
1-1 兩液相反應系統------------------------------------------------------1
1-2 相間轉移觸媒的種類------------------------------------------------------2
1-3 液-液-固三相催化反應----------------------------------------------------5
1-3-1 三相觸媒之擔體-------------------------------------------------6
1-3-2 影響三相觸媒活性的因素---------------------------------------6
1-4 三液相催化技術------------------------------------------------------------8
1-4-1 三液相催化系統的原理---------------------------------------8
1-4-2 第三液相觸媒的重複使用------------------------------------9
1-5 丙烯基苯基醚(Allyl phenyl ether)之合成-----------------------9
1-5-1 丙烯基苯基醚之合成---------------------------------------------9
1-5-2 丙烯基苯基醚之應用--------------------------------------------11
1-6 研究內容--------------------------------------------------------11

第二章實驗--------------------------------------------------------------------------14
2-1 實驗藥品-------------------------------------------------------------------14
2-1 實驗方法-------------------------------------------------------------------16
2-3 分析方法-------------------------------------------------------------------21
2-3-1 固體觸媒中氯離子含量(活性基)之分析---------------------21
2-3-2 四級銨離子濃度之分析-----------------------------------------23
2-3-3 氣相層析法(G.C.)分析-------------------------------------------24
2-4 校正曲線---------------------------------------------------------------25
2-5 有機相反應物轉化率定義----------------------------------------------25

第三章續流式三液相反應--------------------------------------------------------31
3-1 形成三液相系統所需丙烯基苯基醚之最適當用量-------------35
3-2 Pr4NBr 莫耳分率對三液相系統的影響-----------------------37
3-3 重複批次操作對觸媒在三相中分佈的影響---------------------38
3-3-1 對第三液相四級銨離子含量、體積及四級銨離子濃度的影響--38
3-3-2 對油、水相四級銨離子濃度及轉化率的影響--------------40
3-4 不同流率下反應器所需穩定時間-------------------------------41
3-5 攪拌速率的效應-----------------------------------------------------43
3-6 進料流率的效應-----------------------------------------------------43
3-7 溫度的效應-----------------------------------------------------44
3-8 擋板與填充床的比較---------------------------------------------45
3-9 萃取器段數對長時間反應的影響-----------------------------------46
3-10 不同莫耳比進料對長時間反應的影響---------------------------46
3-11 相間轉移觸媒長時間反應的穩定性-----------------------------47

第四章批式液-液-固三相反應---------------------------------------------------66
4-1 攪拌速率對反應的影響--------------------------------------------69
4-2 油、水體積比對反應的影響---------------------------------------------69
4-3 溫度對反應的影響------------------------------------------------------71
4-4 觸媒用量對反應的影響----------------------------------------------72
4-5 酚化鈉用量對反應的影響-------------------------------------------72
4-6 丙烯基溴用量對反應的影響----------------------------------------74
4-7 添加鹽類對反應的影響-------------------------------------------------74
4-8 觸媒重複使用次數對反應的影響------------------------------------75
4-9 添加三正丁基胺對反應的影響---------------------------------------76
4-10 三相觸媒在長時間續流式操作的穩定性-------------------------77
4-11 反應速率式之推導---------------------------------------------------79

第五章結論與未來研究方向----------------------------------------------------102
5-1 三液相系統與液-液-固系統之綜合比較----------------------------102
5-1-1 催化效益----------------------------------------------------------102
5-1-2 催化穩定性-------------------------------------------------------103
5-1-3 續流式操作難易度----------------------------------------------103
5-1-4 觸媒製備程序----------------------------------------------------104
5-2 結論-----------------------------------------------------------------------104
5-3 對未來研究方向建議--------------------------------------------------108
參考文獻-----------------------------------------------------------------------------110
自述-----------------------------------------------------------------------------------114
參考文獻

[1] Starks, C. M.; Liotta, C.; Halpern, M.; “Phase-Transfer Catalysis, Fundamentals, Applications and Industrial Perspectives ”, Chapman & Hall: New York, 1994.

[2] Menger, F. M.; J. Am. Chem. Soc., 1970, 92, 5965.

[3] Tomita, A.; Ebina. N.; Tamai, Y.; J. Am. Chem. Soc., 1977, 99, 5725.

[4] Makosza, M.; Bialecka, E.; Tetrahedron Letters, 1977, 183.

[5] Solodar, J.; Tetrahedron Letters, 1971, 287.

[6] Dehmlow, E. V.; Dehmlow, S. S., “ Phase transfer catalysis ”, Weinheim ; Deerfield Bemch, Florida; Basel, Verlag Chemin, 1983.

[7] Reuben, B.; Sjoberg, K.; Chemtech., 1981, 315.

[8] Janakiraman, B.; Sharma, M. M.; Chem. Eng. Sci., 1982, 37, 1497.

[9] Freeman, H. H.; Pure Appl. Chem., 1986, 58, 857.

[10] Kobayashi, H.; Sonada, T.; Chem. Lett., 1982, 1185.

[11] Iwamoto, H.; Tetrahedron Letters, 1983, 24(32), 4703.

[12] Starks, C. M.; J. Am. Chem. Soc., 1971, 93, 195.

[13] Starks, C. M.; Chemtech., 1980, 110.

[14] Herriot, A. W.; Picker, D., “ Phase transfer catalysis. An evaluation of catalysis ”, J. Am. Chem. Soc., 1975, 97.

[15] Zerda, J. D. L.; Neumann, R.; Sasson,Y.; J. Chem. Soc.:Perkin Trans.Ⅱ, 1986, 823.

[16] Frensdorff, H. K.; J. Am. Chem. Soc., 1971, 93(3), 600.

[17] Totten, G. E.; Clinton, N. A.; JMS-Rev. Macromolecules Chem. Phys., 1988, C28 (2), 293.

[18] Hennis, H. E.; Thompson L. R., Long J. P.; I & EC Prod. Res. And Dev., 1968, 7, 2, 96.

[19] Hennis, H. E.; Easterly J. P.; Collins, L. R.; Thompsom, L. R.; I & EC Prod. Res. And Dev., 1967, 6, 193.

[20] Merker, R. L.; Scott M. J.; J. Org. Chem., 1961, 26, 5180.

[21] Kimura, Y.; Regen, S. L.; J. Org. Chem., 1983, 48, 195.

[22] Gokel, G. W.; J. Org. Chem., 1983, 48, 2837.

[23] Neumann, R.; Sasson, Y.; J. Org. Chem., 1984, 49, 3448.

[24] Takaki, U.; Smid, J.; J. Am. Chem. Soc., 1974.

[25] Ford, W. T.; Tomoi, M.; Advances in Polym. Sci., 1984, 55.

[26] Hodge, P.; Sherrington, D. C.; “ Polymer-Supported reactions in organic synthesis ”, John Wiley & Sons press, 1920.

[27] Manecke, G.; Storck, W. A.; Chem. Int. Ed. Engl., 1978, 17, 657.

[28] Pepper, K. W.; Paisley, H. M.; Young, M. A.; J. Chem. Soc., 1953, 4097.

[29] Tundo, P.; J. Chem. Soc.: Chem. Comm., 1977, 641.

[30] Tundo, P.; Venturello, P.; J. Am. Chem. Soc., 1981, 103, 856.

[31] Tundo, P.; Venturello, P.; Angeletti, E.; J. Am. Chem. Soc. 1982, 104, 6551.

[32] Tundo, P.; Venturello, P.; Angeletti, E.; Israel J. of Chem., 1985, 26, 283.

[33] Arrad, O.; Sasson, Y.; J. Org. Chem., 1989, 54, 4993.

[34] Chiles, M. S.; Reeves, P. C.; Tetrahedron Letters, 1979, 36, 3367.

[35] Tomoi, M.; Ford, W. T.; J. Am. Chem. Soc., 1981, 103, 3821.

[36] Ohtani, N.; Regen, S. L.; Macromolecules, 1981, 14, 1594.

[37] Regen, S. L.; Besse, J. J.; J. Am. Chem. Soc., 1979, 101, 4059.

[38] Tomoi, M.; Hosokama, Y.; Kakuchi, H.; J. Polym. Sci.:Polym. Chem. Ed., 1984, 22, 1243.

[39] Regen, S. L.; J. Am. Chem. Soc., 1976, 98, 6270.

[40] Lloyd, W. G.; Durocher, T. E.; J. Appl. Polym. Sci., 1963, 7, 2025.

[41] Tomoi, M.; Ogawa, E.; Hosokama, Y.; Kakiuchi, H.; J. Polym. Sci.: Polym. Chem. Ed., 1982, 20, 3421.

[42] Weng, H. S.; Huang, W. C.; J. Chin. Inst. Chem. Eng., 1987, 18, 109.

[43] Wang, D. H.; Weng, H. S.; Chem. Eng. Sci., 1988, 43, 2019.

[44] Hsiao, H. C.; Weng, H. S.; J. Chem. Eng. Japan, 2000, accepted.

[45] Weng, H. S.; Wang, C. M.; Wang, D. H.; Ind. Eng. Chem. Res., 1997, 36, 3613.

[46] Wang, D. H.; Weng, H. S.; J. Chin. Inst. Chem. Eng., 1995a, 26, 147.

[47] Wang, D. H.; Weng, H. S.; Chem. Eng. Sci., 1995b, 50, 3477.

[48] Wang, D. H.; Weng, H. S.; J. Chin. Inst. Chem. Eng., 1996, 27, 129.

[49] Weng, H. S.; Wang, D. H.; J. Chin. Inst. Chem. Eng., 1996, 27, 419.

[50] Yadav, G. D.; Reddy, C. A.; Ind. Eng. Chem. Res., 1999, 38, 2245.

[51] Dehmlow, E. V.; Ang. Chem. Int. Ed. Eng., 1977, 16, 493.

[52] Kornblum, N.; Seltzer R.; Haberfield, P.; J. Am. Chem. Soc., 1962, 85, 1148.

[53] Hsiao, H. C.; Weng, H. S.; Chem. Eng. Commun., 2000, revised.

[54] Incan, E. D.; Viout, P.; Tetrahedron Letters, 1975, 31, 159.

[55] Hui, K. M.; Yip, L. C.; J. Polym. Sci., Polym. Chem. Ed., 1976, 14, 2689-2694.

[56] Lokr, D. F., Jr.; Wakefield, L. B.; U. S. Pat., 1977, 4, 060, 563.

[57] Eckroth, D.; Grayson, M.; John Wiley & Sons, Inc., 1983, New York, Vol. 2, 101.

[58] Marconi, P. F.; Ford, W. T.;J. of Catalysis, 1983, 83, 160.

[59] 榎宮卓次; 白石泰士; Jpn. Kokai Tokkyo Koho, Jp. 60, 123, 431 (1986).

[60] 榎宮卓次; 白石泰士; Jpn. Kokai Tokkyo Koho, Jp. 60, 64, 941 (1985).

[61] 田口敏; 井上良夫; 平林一桂; Jpn. Kokai Tokkyo Koho, Jp. 60, 56, 975 (1985).

[62] 鬼頭追造; 田村雅樹; 池呎晴三; Jpn. Kokai Tokkyo Koho, Jp. 60, 100, 566 (1985).

[63] 石延平; 王茂齡; 葉茂榮; 陳志勇, “相間轉移觸媒技術大型計劃之規劃”, 1991.

[64] 蕭旭欽, “以三液相催化技術合成醚類化合物-第三液相形成的條件及觸媒之再使用”, 國立成功大學化工研究所博士論文, 2000.

[65] 李偉齊, “以批式與續流式反應器利用液-液-固相間轉移催化技術合成正丁基苯基醚之最適條件”, 國立成功大學化工研究所碩士論文, 2000.

[66] 王敏昌, “以續流攪拌式反應器利用三液相與液-液-固相間轉移催化技術合成丙烯基苯基醚”, 國立成功大學化工研究所碩士論文, 2001.

[67] 葉茂榮, "利用三級胺催化烷化反應之碘離子及溴離子效應", 國科會專題研究計畫成果報告, 1989.

[68] 黃蒨芸, “環取代率及三正丁基胺固定量對以氯甲基苯乙烯共聚物為擔體之相轉移觸媒活性之影響”,國立成功大學化工研究所碩士論文, 1990.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top