Allenmark, S., Ohlsson, A., Enantioselectivity of lipase-catalyzed hydrolysis of some 2-chloroethyl 2-arylpropanoates studied by chiral reversed-phase liquid-chromatography, Chirality, 4, 98-102, 1992.
Aymard, C., Belarbi, A., Kinetics of thermal deactivation of enzymes: a simple three parameters phenomenological model can describe the decay of enzyme activity, irrespectively of the mechanism, Enzyme Microb. Technol., 27, 612-618, 2000.
Azerad, R., Application of biocatalysis in organic synthesis, Bull. Soc. Chim. Fr., 132, 17-51, 1995.
Berglund, P., Controlling lipase enantioselectivity for organic synthesis, Biomol. Eng., 18, 13-22, 2001.
Bobrovnik, S. A., Determination the rate constants of some biexponential reactions, J. Biochem. Biophys. Methods, 42, 49-63, 2000.
Cretich, M., Chiari M., Carrea, G., Stereoselective synthesis of (S)-(+)-naproxen catalyzed by carboxyl esterase in a multicompartment electrolyzer, J. Biochem. Biophys. Methods, 48, 247-256, 2001.
Crossley, R., Chirality and the biological activity of drugs, CRC Press, Florida, 1995.
Ebbers, E. J., Ariaans, G. J. A., Houbiers, J. P. M., Bruggink, A., Zwanenburg, B., Controlled racemization of optically active organic compounds: prospects for asymmetric transformation, Tetrahedron, 53, 9417-9476, 1997.
El Gihani, M. T., Williams, J. M. J., Dynamic kinetic resolution, Curr. Opin. Chem. Biol., 3, 11-15, 1999.
Gandhi, N. N., Application of lipase,J. Am. Oil Chem. Soc. , 74, 621-634, 1997.
García, R., García, T., Martínez, M., Aracil, J., Kinetic modelling of the synthesis of 2-hydroxy-5-hexenyl 2-chlorobutyrate ester by an immobilized lipase, Biochem. Eng. J., 5, 185-190, 2000.
Gianfreda, L., Marrucci, G., Grizzuti, N., Greco, G., Acid Phosphatase deactivation by a series mechanism, Biotechnol. Bioeng., XXVI, 518-527, 1984.
Harrington, P. J., Lodewijk, E., Twenty years of naproxen technology, Org. Process Res. Dev., 1, 72-76, 1997.
Huerta, F. F., Santosh Laxmi, Y. R., Bäckvall, J. E., Dynamic kinetic resolution of α-hydroxy acid esters, Org. Lett., 2, 1037-1040, 2000.
Iijima, K., Fukuda, W., Tomoi, M., Polymer-supported bases. xi. esterification and alkylation in the presence of polymer-supported bicyclic amidine or guanidine moieties, Pure Appl. Chem., A29, 249-261, 1992.
Jaeger, K. E., Reetz, M. T., Directed evolution of enantioselective enzymes for organic chemistry, Curr. Opin. Chem. Biol., 4, 68-73, 2000.
Jaeger, K. E., Reetz, M. T., Microbial lipases form versatile tools for biotechnology, Trends Biotechnol., 16, 396-403, 1998.
Klibanov, A. M., Why are enzymes less active in organic solvents than in water?, Trends Biotechnol., 15, 97-101, 1997.
Laane, C., Boeren, S., Vos, K., Veeger, C., Rules for optimization of biocatalysis in organic solvents, Biotechnol. Bioeng., XXX, 81-87, 1987.
Markweg-Hanke, M., Lang, S., Wanger, F., Dodecanoic acid inhibition of a lipase form Acinetobacter sp. OPA 55, Enzyme Microb. Technol., 17, 512-516, 1995.
Mingarro, I., Abad, C., Braco, L., Interfacial activation-based molecular bioimprinting of lipolytic enzymes, Proc. Natl. Acad. Sci. USA, 92, 3308-3312, 1995.
Mukesh, D., Jadhav, S., Banerji, A. A., Thakkar, K., Bevinakatti, H. S., Lipase-catalysed esterification reactions---experimental and modeling studies, J. Chem. Tech. Biotechnol., 69, 179-186, 1997.
Murray, R. K., Granner, D. K., Mayes, P. A., Rodwell, V. W., Harper’s Biochemistry, 24th ed., Appleton & Lange, Connecticut, 1996.
Patel, R. N., Stereoselective biocatalysis, Marcel Dekker, New York, 2000.
Sakaki, K., Giorno, L., Drioli, E., Lipase-catalyzed optical resolution of racemic naproxen in biphasic enzyme membrane reactors, J. Membr. Sci., 184, 27-38, 2001.
Sharma, R., Chisti, Y., Banerjee, U. C., Production, purification, characterization, and applications of lipases, Biotechnol. Adv., 19, 627-662, 2001.
Srinivas, R., Panda, T., Enhancing the feasibility of many biotechnological processes through enzyme deactivation studies, Bioprocess Eng., 21, 363-369, 1999.
Stinson, S. C., Chiral drugs, Chem. Eng. News, 78, 55-78, 2000.
Stinson, S. C., Chiral pharmaceuticals, Chem. Eng. News, 79, 79-97, 2001.
Strauss, U. T., Faber, K., Deracemization of (±)-mandelic acid using a lipase-mandelate racemase two-enzyme system, Tetrahedron: Asymmetry, 10, 4079-4081, 1999.
Theil, F., Enhancement of selectivity and reactivity of lipases by additives, Tetrahedron, 56, 2905-2919, 2000.
Tomoi, M., Kato, Y., Kakiuchi, H., Polystyrene-supported 1,8-diazabicyclo [5.4.0]undec-7-ene as reagent in organic syntheses, Makromol. Chem., 185, 2117-2124, 1984.
Um, P. J., Drueckhammer, D. G., Dynamic enzymatic resolution of thioesters, J. Am. Chem. Soc., 120, 5605-5610, 1998.
Wandrey, C., Wichmann, R., Production of L-amino acids in the membrane reactor, Biotechnol., 1, 85-92, 1987.
Xin, J. Y., Li, S. B., Wang, L. L., Enzymatic resolution of (S)-(+)-naproxen in a trapped aqueous-organic solvent biphase continuous reactor, Biotechnol. Bioeng., 68, 78-83, 2000.
Xin, J. Y., Li, S. B., Xu, Y., Chui, J. R., Xia, C. G., Dynamic enzymatic resolution of naproxen methyl ester in a membrane bioreactor, J. Chem. Technol. Biothechnol., 76, 579-585, 2001.
張春生,有機溶劑中利用脂肪��鏡像選擇合成(S)-Naproxen酯類前驅藥及動態動力分割(S)-Naproxen,國立成功大學化學工程研究所博士論文,1998。陳建清,環己烷中利用固定化酵素為觸媒進行(S)型Ibuprofen酯類前驅藥之合成,國立成功大學化學工程研究所碩士論文,1998。鄭育奇,水解及酯化副反應對轉酯化外消旋Naproxen硫酯動態動力分割之影響,國立成功大學化學工程研究所碩士論文,2000。