跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫煜琅
研究生(外文):Yu-Lang Sun
論文名稱:固態氟化鑭電解質在常溫型感測器之應用
論文名稱(外文):A Room-temperature Gas Sensor Based onSolid-State Lanthanum Fluoride Electrolyte
指導教授:楊明長
指導教授(外文):Ming-Chang Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:159
中文關鍵詞:塔佛曲線混合電位氧氣一氧化碳
外文關鍵詞:mixed potentialTafel plotoxygencarbon monoxide
相關次數:
  • 被引用被引用:2
  • 點閱點閱:660
  • 評分評分:
  • 下載下載:100
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本研究主旨在探討白金(濺鍍)/氟化鑭/白金(濺鍍)電極片感測氧氣與一氧化碳的特性,希望能發展常溫下感測一氧化碳的感測器。探討一氧化碳在無氧及氧氣存在的感測特性及機構,影響靈敏度的變因包括流速、壓錠壓力與氧氣的濃度,並提出塔佛曲線關係略圖對感測機構作說明。
氟化鑭粉末在不同壓力1.8增加為4.4 ton/cm2壓錠,經700 ºC鍛燒7小時後,隨壓力增加孔隙度從7.52×10-3減少至4.73×10-3,氟化鑭電解質連續相隨壓錠壓力增加而增加,有助於電解質內部傳導離子的能力。此外壓錠壓力增加造成感測電極表面粗糙度降低,由循環伏安圖中氫氣氧化峰的庫倫量由24.6 mC減少至19.8 mC,顯示真實活性面積隨壓力增加減少。
以白金/氟化鑭/白金感測電極片感測氧氣,氣體流速從50增加為80 ml/min時,電子轉移數1.2改變為2.1。氧氣應答時間隨流速增加至80 ml/min而減小為11.7分鐘。
氮氣中一氧化碳感測淨電位值不受氣體流速的影響,靈敏度為66 mV/decade不受流速影響推算電子轉移數為0.9。
在不同氧氣濃度存在下,一氧化碳的感測淨電位差值隨著氧氣濃度增加而減少,氧氣濃度高達40 %,靈敏度急遽下降至25.9 mV/decade。
氧氣、氮氣中一氧化碳及氧氣存在下一氧化碳感測靈敏度均受氟化鑭電解質錠壓錠壓力影響,隨著壓錠壓力增加,靈敏度先增加後減少,有極大值產生。
實驗所得氧氣與一氧化碳塔佛曲線略圖中混合電位減去氧氣平衡電
位,與開路電位下量測感測淨電位差值符合。此外,本文提出塔佛曲線略圖,均可合理解釋氧氣及氧氣存在下一氧化碳的感測電位,在氧氣濃度固定下,一氧化碳感測淨電位差值不受背景電位改變的影響.
Abstract

The preparation of Pt/LaF3/Pt assembly and its sensing characteristics of oxygen and carbon monoxide at room temperature were studied in this research. It is our objective to develop carbon monoxide sensor operated at room temperature. Sensing behavior and mechanism for carbon monoxide with and without oxygen were also discussed. Parameters including flow rate, loading pressure on LaF3 pellet, and concentration of oxygen affected sensitivity. In this thesis, Tafel plot was proposed to describe the sensing mechanism.
LaF3 powder was pressed to form a pellet by different loading pressures from 1.8 to 4.4 ton/cm2, and then sintered at 700 ºC for 7 hr. When loading pressure on LaF3 powder was increased, porosity of pellet decreased from 7.52×10-3 to 4.73×10-3and LaF3 phase also increased. Increasing LaF3 phase can improve ionic conduction of the electrolyte. In addition, the surface roughness on sensing electrode decreased due to higher loading pressure. From cyclic voltammogram, the change of charge for hydrogen oxidation revealed that real surface area decreased with the loading pressure increasing.
Using Pt/LaF3/Pt assembly for sensing oxygen, sensitivity decreased from 49.2 to 28.7 mV/decade and the corresponding number of electron transfer increased from 1.2 to 2.1 when gas flow rate increased from 50 to 80 ml/min. The response time decreased to 11.7 min with gas flow rate increasing to 80 ml/min.
The effect of gas flow rate on sensing potential difference for carbon monoxide without oxygen could be neglected. Sensitivity for carbon monoxide was 66 mV/min, and the calculated number of electron transfer was 0.9.When carbon monoxide existed, the sensing potential difference
decreased with increasing oxygen concentration. The sensitivity for carbon monoxide decreased significantly down to 25.9 mV/decade when oxygen concentration was up to 40 %.
Loading pressure influenced the sensitivity for sensing oxygen, and carbon monoxide with and without oxygen. There was an optimum loading pressure for a maximum sensitivity.
The sensing potential difference, the mixed potential subtracting from equilibrium potential of oxygen in Tafel plot, for carbon monoxide in the presence of oxygen corresponded to that measured by open circuit potential. In addition, the proposed Tafel plot was reasonable for explaining the sensing potential difference of oxygen and carbon monoxide in oxygen. As oxygen concentration was fixed, the sensing potential difference was not affected by the change of background potential.
目錄
中文摘要……………………………………………………………………...I
英文摘要…………………………………………………………………….III
目錄………………………………………………………………………..…V
圖目錄…………………………………………………………………….…IX
表目錄……………………………………………………………………...XV
符號表……………………………………………………………………..XVI

第一章 緒論………………………………………………………….……..1
1.1 化學感測器的使用概況 ………………………………………………1
1.2 氣體感測器的種類與感測原理 ………………………………………1
1.2.1 觸媒燃燒型氣體感測器 ……………………………………...2
1.2.2 半導體型氣體感測器.…………………………………………2
1.2.3 場效電晶體型氣體感測器………………….…………………7
1.2.4 石英震盪型氣體感測器……………………………………….9
1.2.5 電化學固態電解質型氣體感測器 .…………………………10
1.2.6 電化學固態高分子電解質型氣體感測器 ………………….12
1.3 氣體感測器的新動向…………………………………………………14
1.4 固態電解質氧氣感測器………………………………………………14
1.3.1 高溫型固態電解質……………………………………….…..15
1.3.2 低溫型固態電解質…………………………………….……..19
1.3.3 高分子固態電解質……………………….…………….…….23
1.5 固態電解質一氧化碳氣體感測器……………………..………….….24
1.4.1 高溫型固態電解質………………………………..………….24
1.4.2 低溫型固態電解質…………………………………………...29
1.4.3 高分子固態電解質…………………………..……………….29
1.6 研究動機…………………………………….………………………...32
第二章 原理………………………….……………………………………33
2.1 氧氣電位式感測原理…………………………………………………33
2.2 一氧化碳在無氧下的感測原理……………………….……………...37
2.3 混合電位之感測原理 ……………………….……………………….39
2.4 一氧化碳在氧氣存在下之感測原理 ……………..…………………39
2.4.1 淨電位差值與一氧化碳濃度對數值成線性關係…….………39
2.4.2 淨電位差值與一氧化碳濃度成線性關係…………………….44
第三章 實驗設備與步驟……………….…………………………………46
3.1 實驗儀器………………………………………………………………46
3.2 實驗藥品………………………………………………………………47
3.3 實驗步驟…………………………….………………………………...48
3.3.1 白金/氟化鑭感測電極之組裝…………………………………48
3.3.1a 氟化鑭電解質錠的製備……………………………48
3.3.1b 白金/氟化鑭/白金電極片之製備…….……………..50
3.3.1c 白金/氟化鑭/白金電極片與集電環的黏接……….50
3.4 氟化鑭粉末材料特性之鑑定…………………………………………55
3.4.1 以XRD氟化鑭粉末晶型分析………………………………55
3.4.2 以SEM作氟化鑭錠之結構觀察.……………………………55
3.4.3 以BET作氟化鑭錠之孔隙度分析.…………………………55
3.4.4 以α-step作氟化鑭錠粗糙度之量測.…….…………………56
3.4.5 感測電極之電化學活性面積量測………..………………….56
3.5 對氧氣之感測…………………………….…………………………..57
3.5.1 感測電位曲線………………………………………………..57
3.5.2 應答時間……………………………………………………..59
3.5.3 靈敏度………………………………….…………………….60
3.6 對一氧化碳之感測……………………………..…………………….61
3.6.1 感測電位曲線……………………………….……………….61
3.6.2 應答時間………………………………..……………………62
3.6.3 靈敏度………………………………………………………..63
3.7 塔佛曲線的量測…………………………………..………………….64
第四章 結果與討論…………………….………………………………...65
4.1 氟化鑭材料特性之鑑定….……………….………………………….65
4.1.1 氟化鑭粉末晶型分析.………………..………………………65
4.1.2 氟化鑭電解質片之結構觀察…………..…………………….66
4.1.3 氟化鑭電解質片之孔隙度分析……………………………...72
4.1.4 氟化鑭電解質片粗造度的量測…………..………………….76
4.1.5 工作電極之電化學活性面積量測……..…………………….78
4.2 氧氣感測特性之研究……….………………………………………...83
4.2.1 氧氣感測電位曲線…………….……………………………..83
4.2.2 氟化鑭電解質片鍛燒溫度對感測的影響…………………...84
4.2.3 氣體流速對於氧氣感測的影響……..……………………….84
4.2.4 氧氣感測機構的探討………………………………………...90
4.2.5 壓錠壓力對於氧氣感測的影響……………………………...97
4.2.6 氧氣感測應答時間……………….…………………………106
4.3 一氧化碳在無氧感測特性之研究……………..……………………109
4.3.1 一氧化碳感測電位曲線…………………………………….109
4.3.2 氣體流速對於一氧化碳感測的影響………...……………..110
4.3.3 壓錠壓力對於一氧化碳感測的影響………...……………..116
4.4 氧氣存在下一氧化碳感測特性之研究…….……………………….117
4.4.1 氧氣存在下一氧化碳的感測電位曲線…….………………117
4.4.2 鍛燒溫度對一氧化碳感測的影響………………………….123
4.4.3 氧氣濃度對於一氧化碳感測的影響…….…………………127
4.4.4 氧氣存在下一氧化碳的塔佛曲線………………………….128
4.4.5 氧氣存在下一氧化碳感測機構的探討…………………….136
4.4.6 壓錠壓力對於空氣中一氧化碳感測的影響……………….139
4.4.7 空氣中一氧化碳感測應答時間…………………………….140
第五章 結論與建議……..……………………………………………….147
參考文獻


圖目錄

Figure 1.1 The structure of a catalytic combustion sensor. …...…..………..3
Figure 1.2 A structure of two types of semiconductor sensor. …...………...8
Figure 1.3 (a) Schematic of zirconia exhaust sensor.
(b) Experimental sensing voltage vs. air-fuel ratio…………….17
Figure 1.4 The structure of a commercial oxygen sensor. ……..…………17
Figure 1.5 A ZrO2 pumping cell with an O2 diffusion barrier consisting
of a confined volume with an aperture A. ……....…………….18
Figure 1.6 Typical I-V characteristics of device in Fig. 1.5 for
(a) O2 in N2
(b) a mixture of O2, H2O and CO2 in N2……...……………….18
Figure 1.7 Structure of a oxygen sensing element using a LaF3 single crystal. …….……………………………………..…………….20
Figure 1.8 Influence of the water vapor treatment temperature on 90 %
of response time and the number of electron transfer. …..…….20
Figure 1.9 Cross-sectional views of the YSZ- based devices attached
with
(a) only a Pt mesh
(b) one oxide layer
(c) two oxide layers……………………………..……………...27
Figure 1.10 Schematic diagram for a tubular YSZ-based device using
CdO and SnO2 electrodes………………………..……………..28
Figure 1.11 Cross-sensitivities to various gases at 600 ºC for the tubular YSZ-based device using CdO and SnO2 electrodes. (Gas concentration CO, H2, NO, NO2, CH4; 200 ppm each, CO2; 10000 ppm , H2O; 1.5 kPa)………………………….…………28
Figure 1.12 Structure of a planar CO sensor (dimension in millimeter)……31
Figure 1.13 The mechanism to detect CO on a planar sensor: (1) Nafion;
(2) counter electrode; (3) reference electrode; (4) working electrode; (5) alumina; (6) potentiostat………………….…..…31
Figure 3.1 Mold for pressing LaF3 pellet…………………...……………..49
Figure 3.2 The thermal process for LaF3 sintering. ..…………...…………50
Figure 3.3 Schematic diagram of (a) Pt/LaF3/Pt electrode assembly (b) Pt/LaF3/Pt LaF3 sensing assembly. ...………………...………...52
Figure 3.4 Schematic of sensing cell. ...…………………………..……….53
Figure 3.5 The experimental setup for the LaF3-based sensor. .…….…….54
Figure 3.6 Schematic of structure to determine the active area of the platinum electrode on LaF3 pellet. ..……………………..……58
Figure 4.1 XRD spectra LaF3 powder (a) before sintering
(b) after sintering at 600 ºC (c) after sintering at 700 ºC
(d) after sintering at 800 ºC (e) after sintering at 900 ºC. ..…... 67
Figure 4.2 SEM micrographs of particle structure inside LaF3 pellet
(2.7 ton/cm2 ) structure (a)before sintering, (b)after sintering
at 700 ºC for 7 hr. ..…………………………………………….69
Figure 4.3 SEM micrographs of LaF3 pellet under different loading
pressure after 700 ºC for 7 hr.(a)Loading pressure 1.8 ton/cm2.
(b) Loading pressure 2.7 ton/cm2………………………………70
(c) Loading pressure 3.5 ton/cm2 (d) Loading pressure 1.8 ton/cm2 ……………………….…………………………..……71
Figure 4.4 The illustration of LaF3 pellet affected by loading pressure
from lower pressure (a) to higher pressure, (b) and (c) The
white parts and gray parts present the pores and LaF3 phase inside the sintered LaF3. ..………………………………….…74
Figure 4.5 Cyclic voltammogram for sputtered Pt on LaF3 in 1 N
H2SO4 solution. ..…………………………………………….79
Figure 4.6 The modified cyclic voltammogram for sputtered Pt on
LaF3 at different pressure in 1 N H2SO4 solution. ..………….81
Figure 4.7 Sensing response of the concentration of 10, 20, 40, 60, 80, 100% oxygen based on LaF3 pellet made by 1.8 ton/cm2
pressure loading. ……...………………………………………85
Figure 4.8 The calibration curve for sensing O2 in the condition of
figure 4.11. ..…………………………………………………..86
Figure 4.9 Sensing response of the concentration of 10, 20, 40, 60, 80, 100% oxygen based on LaF3 pellet sintered at 900 ºC. ……….88
Figure 4.10 The calibration curve for sensing O2 at different sintering temperature…………………………………………………….89
Figure 4.11 Sensing response of the concentration of 10, 20, 40,
60, 80, 100% oxygen in flow rate of (a) 80 ml/min, (b) 70 ml/min, (c) 60 ml/min, (d) 50 ml/min. ..…………………….……….…92
Figure 4.12 The relationship between potential difference and gas
flow rate in different oxygen concentration of 10 to 100 %...…93
Figure 4.13 The calibration curve of oxygen responses in different
flow rate: 50, 60, 70, 80 ml/min in the concentrations
of 10 to 100 %. ………………………………………………..94
Figure 4.14 The plot of sensitivity vs. different flow rate: 50, 60, 70, 80 ml/min in the oxygen concentrations of 10 to 100 %..……...…95
Figure 4.15 Tafel plot proposed to explain the measured potential...………98
Figure 4.16 Sensing response of the concentration of 10, 20, 40,
60, 80, 100% oxygen based on LaF3 pellet made by
(a) 1.8 ton/cm2, (b) 2.7 ton/cm2 (c)3.5ton/cm2 (d) 4.4
ton/cm2………………………………………………………..102
Figure 4.17 The relationship between potential difference and loading pressure in different oxygen concentration of 10 to
100 %. ……………………………………………...………...103
Figure 4.18 The calibration curve of oxygen responses in different
loading pressure: 1.8、2.7、3.5、4.4 ton/cm2 in the
concentrations of 10 to 100 %. ………………………………104
Figure 4.19 The plot of sensitivity vs. loading pressure from 1.8 to 4.4 ton/cm2 in the oxygen concentrations of 10 to 100 %. ……....105
Figure 4.20 The response time vs. concentration of oxygen from
10 % to 100 %. ………………………………………………108
Figure 4.21 Sensing response of the concentration of 100, 200, 300,
400, 500, 600, 700 ppm carbon monoxide in flow rate of
(a) 60 ml/min, (b) 75 ml/min(c) 100 ml/min, (d) 110 ml/min. ……………………………………………………….111
Figure 4.22 The calibration curve of carbon monoxide responses in
different flow rate: 60, 75, 100, 110 ml/min in the
concentrations of 200 ppm to 700 ppm.. ………………….…113
Figure 4.23 The relationship between potential difference and gas flow
rate in different carbon monoxide of 200 ppm to 700 ppm…..114
Figure 4.24 The plot of sensitivity vs. different flow rate: 60, 75, 100, 110 ml/min for the carbon monoxide of 200 ppm to 700 ppm. …..……………………………………………………...115
Figure 4.25 Sensing response of carbon monoxide from 100 to 700
ppm in different loading pressure (a) 1.8 ton/cm2, (b) 2.7 ton/cm2(c) 3.5 ton/cm2, (d) 4.4 ton/cm2. ……………………..118
Figure 4.26 The relationship between potential difference and loading pressure in different carbon monoxide of 100 to 700 ppm…..120
Figure 4.27 The calibration curve for carbon monoxide responses
from 100 to 700 ppm in different loading pressure: 1.8、2.7、3.5、4.4 ton/cm2. ……..……………………………………..121
Figure 4.28 The plot of sensitivity vs. loading pressure from 1.8 to 4.4 ton/cm2 in the carbon monoxide of 100 to 700 ppm. ……….122
Figure 4.29 Sensing response of the concentration of 100 ppm carbon monoxide mixed with 30 % oxygen. ….……………………124
Figure 4.30 Sensing response of the concentration of 100, 200, 300,
500, 700 ppm carbon monoxide mixed with 30 % oxygen….125
Figure 4.31 The calibration curve for sensing CO/air at different
sintering temperature…………………………………………126
Figure 4.32 The relationship between potential difference and oxygen concentrations in different carbon monoxide of 100 ppm
to 700 ppm. …………………………………………………..129
Figure 4.33 The calibration curve of carbon monoxide responses in
different oxygen concentration: 2 %, 8 %, 20 %, 30 %,
40 % the concentrations of 100 ppm to 700 ppm.. …….…….130
Figure 4.34 The plot of sensitivity vs. different oxygen from 0 to 40 %
in the carbon monoxide of 100 to 700 ppm. …….…………...131
Figure 4.35 Chronoamperogram for 200 ppm carbon monoxide at
different applied potential from –0.17 to –0.1 V (vs. Pt). ……133
Figure 4.36 The Tafel plot for 30 % oxygen and 200 ppm carbon monoxide. …………………………………………………....134
Figure 4.37 Chronoamperogram for 30 % oxygen at different applied potential from –0.02 to –0.12 V (vs. Pt). ……………………135
Figure 4.38 Tafel plot proposed to explain the measured potential. ……..138
Figure 4.39 Sensing response of the concentration of 100, 200, 300,
500, 700 ppm in 20 % oxygen. ………………………………142
Figure 4.40 The relationship between potential difference and loading pressure in different carbon monoxide of 100 to 700 ppm in the presence of the air. ………………………………………….143
Figure 4.41 The calibration curve for carbon monoxide responses in
air in different loading pressure: 1.8、2.7、3.5、4.42 ton/cm2
from 100 to 700 ppm.. …………..…………………………..144
Figure 4.42 The plot of sensitivity vs. loading pressure from 1.8 to 4.4 ton/cm2 in the carbon monoxide of 100 to 700 ppm in the presence of the air. …..……………………………………….145
Figure 4.43 The response time affected by carbon monoxide of 100
to 700 ppm in the presence of the air. .……………………….145

表目錄

Table 1.1 Classification and characteristics for main gas sensors………..3
Table 1.2 Catalytic combustion sensors…………………………………....4
Table 1.3 Semiconductor gas sensors…………………………………...5~6
Table 1.4 Various models for the commercial gas sensors of electrochemical type…………………………………………...13
Table 1.5 Effect of water vapor treatment on the surface atomic ratio [O]/[F] and 90 % of response time……………………………………..21
Table 1.6 Some properties of the perovskite oxides used for the sensing electrode of LaF3-based oxygen sensor………………………..22
Table 1.7 Threshold Limited Value………………………………………25
Table 4.1 BET results for LaF3 sintered at 700 ºC made by different loading pressure. (Diameter of pellet: 1.2 mm)………………………..75
Table 4.2 The roughness measurement of the Pt electrode surface on LaF3a……………………………………………………………77
Table 4.3 Electrochemical area of sputtered Pt of electrodes by different loading pressure.(LaF3 sintered at 700 ºC)…………………….82

符號表

aij 物種j的活性(mole/L)
A 孔洞橫截面積總和(cm2)
A’ 電極面積(cm2)
B 常數(mmHg-1)
B1 常數(A/M)
B2 常數(A/M)
C 常數,與氣體吸附熱及脫附熱有關(無因次)
Ci 待測氣體濃度(mole/cm3)
Cj 物種j的濃度(mole/ml)
Cs 吸附相於任一時刻之濃度(ppm)
Csm 當達成單層吸附時吸附相的濃度(ppm)
D 氣體擴散係數(cm2/sec)
DCO 一氧化碳的擴散係數(cm2/sec)
ΔEemf 兩電極的電位差(Volt)
△EO2 氧氣的平衡電位差(Volt)
△ECO 一氧化碳在氧氣下的電位差(Volt)
△E 感測淨電位差(Volt)
EeqCO 一氧化碳的平衡電位(Volt)
EeqO2 氧氣的平衡電位(Volt)
Eref 參考電極平衡電位(Volt)
ECO 一氧化碳的平衡電位(Volt)
EM 混合電位(mixed potential)(Volt)
EN2 氮氣背景的平衡電位(Volt)
EO2 氧氣的平衡電位(Volt)
EO2,l 水中溶氧的平衡電位(Volt)
ERef 參考電極平衡電位(Volt)
F 法拉第常數(96500 C/ equivalent)
F -離子佔住LaF3晶格內F -離子的位置
FAin 物種A流入反應器的流量(mole/time)
FAout 物種A流出反應器的流量(mole/time)
Ilim 極限電流(A)
iO2 氧氣反應的淨電流(A)
iCO 一氧化碳反應的淨電流(A)
i0O2 氧氣的交換電流(exchange current)(A)
i0CO 一氧化碳的交換電流(A)
L 孔洞之等效長度(cm)
n 反應物分子或離子反應時的電子轉移數(equivalent/mole)
N 亞佛加厥數(6.02×1023 molecules/mole)
NA 物種A在反應槽內的個數(mole)
O-離子佔住LaF3晶格內F -離子的位置
OH-離子佔住LaF3晶格內F -離子的位置
P 吸附值在氣相中之分壓(mmHg)
P0 實驗溫度下吸附質的飽和壓力(mmHg)
PO2 氧氣分壓(atm)
PCO 一氧化碳分壓(atm)
PCO2 二氧化碳分壓(atm)
R 氣體常數(8.314 J/g•mole•K)
S 待測物的表面積(m2/g)
T 絕對溫度(K)
V’ 反應器的體積(ml)
v 物種流速(ml/min)
V 分壓為P時之吸附氣體體積(ml/g)
Vm 單層吸附時之吸附氣體體積(ml/g)
W 待測物重量(g)
α 吸附分子覆蓋的面積(氮分子為16.2×10-20 m2/molecule)
α1 氧氣反應的轉移係數(transfer coefficient)(無因次)
α2 一氧化碳的轉移係數(無因次)
物種j在感測電極的電化學能(J/mole)
物種j在參考電極的電化學能(J/mole)
物種j在i電極的電化學能(J/mole)
j0i 物種j在i電極的標準電化學能(J/mole)
ψij 靜電位(Volt)
(i=s表示感測電極處, i=r表示參考電極處)
δ 擴散層的厚度(cm)
參考文獻

1.鄭煜騰、鄭耀宗,氣體感測器的市場分析與發展概況,科儀新知,18卷5期,76-84頁,民國86年4月。
2.鄭敦仁,材料與科學,感測元件技術發展動向(Ⅱ),第76期, 96∼100頁,1993年。
3.余榮彬、湯大同,一氧化碳氣體監測器評估,勞工安全衛生研究季刊,第3卷,第3期,61-74頁,1995年。
4.曾明漢,材料與社會,觸媒燃燒型氣體感測器,第68期,57∼61頁,民國81年8月。
5.楊明長、曾坤億、王瓊紫,一氧化碳感測器之原理與應用,化工技術,第8卷第2期,158∼167頁,2000年。
6.A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, and K. S. Goto, Solid-State Gas Sensors: A Review, J. Electrochem. Soc., 139, p.3690-3704, 1992.
7.顧志鴻,MOSFET氣體感測器,材料與社會,第68期,71∼77頁,民國81年8月。
8.眭曉林,固態化學感測元件之積體化設計,材料與科學,第60期,56~61頁,1991年。
9.邱秋燕、周澤川,化學感測器之原理與應用,化工,第40卷,第3期,120∼133頁,1993年。
10.W. J. Fleming, Physical Principles Governing Nonideal Behavior of the Zerconia Oxygen Sensor, J. Electrochem. Soc., 124, p.21-28, 1977.
11.邱秋燕、周澤川,化學感測器之原理與應用,化工,第40卷,第3期,120∼133頁,1993年。
12.蔡嬪嬪,固態離子導體電化學式氣體感測器,材料與社會,第68期,67∼70頁,1992年。
13.陶德和,電流式氣體感測器簡介,科儀新知,第15卷,第2期,第64∼70頁,1993年。
14.K. Marcinkowska, M. P. McGauley and E. A. Symons, A New Carbon Monoxide Sensor Based on a Hydrophobic CO Oxidation Catalyst, Sensors and Actuators, B5, p. 91-96, 1991.
15.B. Jonathan Luff, James S. Wilkinson and Guido Perrone, Indium Tin Oxide Overlayered Waveguides for Sensor Applications, Applied Optics, Vol. 36, Iss. 27, p. 7066-7072, 1997.
16.Viswanathan B., CO Oxidation and NO Reduction on Perovskite Oxides, Catal. Rev.-Sci. Eng., 34, p.337, 1992.
17.H. Inaba, and H. Tagawa, Review Ceria-based solid electrolytes, Solid State Ionics 83, p.1-16, 1996.
18.T. H. Etsell and S. N. Flengas, The Electrical Properties of Solid Oxide Electrolytes, Chem. Rev., 20, p.339, 1970.
19.Y. Yan, Y. Shimizu, N. Miura and N. Yamazoe, Characteristics and Sensing Mechanism of SOx Sensor Using Stabilized Zirconia and Metal Sulphate, Sensors and Actuators B, 12, p.77-81, 1993.
20.Automotive Oxygen Sensors, E.M. LogothetisResearch Staff, Ford Motor Company, Dearborn, MI 48121, U.S.A.
21.J. H. Lee, B. K. Kim, K. Y. Lee, H. I. Kim and K. W. Han, A New catalyst Monitoring Sensor for Gasline Engine Using YSZ-Al2O3 as Solid Electrolyte and Gas Diffusion Barrier, Sensors and Actuators B, 59, p.9-15, 1999.
22.T. Hibino, K. Ushiki and Y. Kuwaahara, Electrochemical Oxygen Pump Using CeO2-Based Solid electrolyte for NOx Detection Independent of O2 Concentration, Solid State Ionics, 93, p.309-314, 1997.
23.R. Akila and K. T. Jacob, An SOx (x=2, 3) Sensor Usingβ-alumina/Na2SO4 Couple, Sensors and Actuators B, 16, p.311-323, 1989.
24.Maruyams, Y. Saito, Y. Matsumoto and Y. Yano, Potentiometric Sensor for Sulfer Oxides Using NASICON as A Solid Electrolyte, Solid State Ionics, 17, p.281-286, 1985.
25.T、G. Rog, A. Kolowska-Rog and K. Zakula, Calciumβ-alumina and NASICON Electrolytes in Galvanic cells with Solid Reference electrodes for Detection of Sulphur Oxide in Gases, Journal of Applied Electrochemistry, 21, p.308-312, 1991.
26.F. Qiu, L. Sun, X. Li, M. Hirata, Static Characteristic of Planar-Type CO2 Sensor Based on NASICON and with Inner-Heater, Sensors and Actuators B, 45, p. 233-238, 1997.
27.Roth R. S., J. R. Dennis and H. F. McMurdie, Phase Diagrams for Ceramists, American Ceramic Society, Columbus, Ohio, vol. 6, p.182, 1987.
28.A. Heuer. And L. W. Hobbs, Science and Technology of Zerconia, American Ceramic Society, Columbus, Ohio, 1981, vol. 3, p.216, 1981.
29.E. M. Logothetis, J. H. Visser, R. E. Soltis and L. Rimai, Chemical and Physical Sensors Based on Oxygen Pumping with Solid-State electrochemical Cells, Sensors and Actuators B, 9, p.183-189, 1992.
30.Z. Y. Can, H. Narita, J. Mizusaki and H. Tagawa, Dtection of Carbon Monoxide by Using Zirconia Oxygen Sensor, Solid State Ionics, 79, p. 344-348, 1995.
31.F. Garzon, I. Rastrick, E. Brosha, R. Houlton, Dense Diffusion Barrier Limiting Current Oxygen Sensor, Sensors and Actuactors B, 50, p. 125-130, 1998.
32.G. Couturier, Y. Danto, R. Gibaud, and J. Salardenne, Influence of Oxygen on Electrical Propertues of Beta PbF2 Thin Films, Solid State Ionics, 5, p. 621-624, 1981.
33.D. R. Franceschetti, J. Schooman and J. R. Macdonald, The Small-Signal A.C. Response ofβ-PbF2, Solid-State Ionics, 5, p. 617-620, 1981.
34.A. Pelloux, J. P. Quessada, J. Fouletier, P. Farby and M. Kleitz, Utilization of a Dilute Solid Electrolyte in a Oxygen Gauge, Solid State Ionics, 1, p. 343-354, 1980.
35.E. Siebert, J. Fouletier and S. Vlminot, Characteristics of An Oxygen Gauge at Temperatures Lower than 200 ºC,Solid State Ionics, 9/10, p. p.1291-1294, 1983.
36.E. Siebert, J. Fouletier and M. Kleitz, Oxygen Sensing With Solid Elecrolyte Cells from Room Temperature up to 250 ºC, Journal of the Electrochemical Society, 134, p. 1573-1578, 1987.
37.N. Yamazoe, J. Hisamoto, S. Kuwata, and N. Miura, Potentiometric Solid-State Oxygen Sensor Using Lanthanum Fluoride Operative at Room Temperature Sensors and Actuators, 12, p. 415-423, 1987.
38.N. Yamazoe, J. Hisamoto, S. Kuwata, and N. Miura, Solid-State Oxygen Sensor Using Sputtered LaF3, Sensors and Actuators, 16, p.301-310, 1989.
39.S. Kuwata, N. Mura, N. Yamazoe and T. Seiyama, A Potentiometric Oxygen Sensor Using LaF3 Single Crystal Operative at Room Temperature, Chemistry Letters, 8, p. 1295-1296, 1984.
40.N. Miura, J. Hisamoto, S. Kuwata, and N. Yamazoe, Solid Electrolyte Oxygen Sensor Using Using LaF3 Sputtered Film Workable at Room Temperature, Chemistry Letters, p.1477-1480, 1987.
41.N. Miura, J. Hisamoto, N. Yamazoe and S. Kuwata, LaF3 Sputtered Film Sensor for Detecting Oxygen at Room Temperature, Application of Surface Science, 33/34, p.1253-1259, 1988.
42.W. Shen, X. D. Wang, R. W. Cattrall, and J. Liesegang, Factors affecting the resistance and performance of Fluoride ion-selective electrodes, Electroanalysis, 7, No. 10, 1995.
43.W. Shen, X. D. Wang, R. W. Cattrall, G. L. Nyberg and J. Liesegang, XPS Analysis of Hydroxide Ion Surface Reactions on CeF3 and LaF3 Fluoride Ion-Selective Electrodes, Electroanalysis, 9, No. 12, 1997.
44.S. Harke, H.-D. Wiemhöfer and W. Göpel, Investigations of Electrodes for Oxygen Sensors Based on Lanthanum Trifluoride as Solid Electrolyte, Sensors and Actuators, B 1, p.188-194, 1990.
45.Y. Shimizu. K. Uemura, N. Miura and N. Yanazoe, Gas-Diffusion electrodes for Oxygen Reduction Loaded with Large Surface Area La1-xCaxMO3 (M=Co, Mn), Chemistry Letters, p. 1979-1982, 1988.
46.J. P. Lukaszewicz, N. Miura, and N. Yamazoe, A LaF3-based Oxygen Sensor with Perovskite-type Oxide Electrode Operative at Room temperature, Sensors and Actuators, B1, p. 195-198, 1990.
47.J. P. Lukaszewicz, N. Miura, and N. Yamazoe, Application of Perovskite-type Oxides to the Sensing Electrode of A LaF3-Based Oxygen Sensor Workable at Room temperature, Japanese Journal of Applied Physics, 28, L771-L713, 1989.
48.J. P. Lukaszewicz, N. Miura and N. Yamazoe, LaF3-Based oxygen sensor Using Pb phthalocyanine Electrode for Quick Response at Room Temperature, Sensors and Actuators B, 9, 1992, p. 55-58.
49.S. Kuwata, N. Miure and N. Yamazoe, A Solid-State Amperometric Oxygen Sensor Using Nafionâ Membrane Operative at room temperature, Chemistry. Letters, 1998, p. 1197.
50.S. Sotiropoulos,and K. Wallgren, Solid-state Microelectrode Oxygen Sensors, Analytical Chimica Acta, 388, p. 51-62, 1999.
51.葉陶淵,化學感測器中氣體感測器的新動向,科儀新知,第20卷,第4期,72∼76頁,1999年。
52.S. Kuwata, N. Miura, and N. Yamazoe, A Solid-State Amperometric Oxygen Sensor Using Membrane, Chemistry Letters, p.1197-1200, 1988.
53.蔡嬪嬪、曾明漢,氣體感測器之簡介、應用及市場,材料與社會68期,50-55頁,民國81年。
54.吳仁彰,固態電解質式一氧化碳感測器的理論研究,量測資訊73期,44-47頁,2000年。
55.H. Okamoto, H. Obayashi and T. Kudo, Carbon Monoxide Gas Sensor Made of Stabilized Zirconia, Solid State Ionics, 1, p. 319-326, 1980.
56.N. Li, T. C. Tan and H. C. Zeng, High-Temperature Carbon Monoxide Potentiometric Sensor, Journal of the Electrochemical Society, 140, p. 1068-1072, 1993.
57.T. Hibino, K. Ushiki and Y. Kuwaahara, Electrochemical Oxygen Pump Using CeO2-Based Solid electrolyte for NOx Detection Independent of O2 Concentration, Solid State Ionics, 93, p. 309-314, 1997.
58.R. Mukundan, E. L. Brosha, D. R. Brown, and F. H. Garzeon, Ceria-Electrolyte-Based Mixed Potential Sensors for the Detection of Hydrocarbons and Carbon Monoxide, Electrochemical and Solid-State Letters, 2, p. 412-414,1999.
59.R. Mukundan, E. L. Brosha, D. R. Brown, and F. H. Garzeon, A Mixed-Potential Sensor Based on A Ce0.8Gd0.2O1.9 Electrolyte and Platinum and Gold Electrodes, Journal of the Electrochemical Society, 147, p. 1583-1588, 2000.
60.F. Qiu, L. Sun, X. Li, M. Hirata, Static Characteristic of Planar-Type CO2 Sensor Based on NASICON and with Inner-Heater, Sensors and Actuators B, 45, 233-238, 1997.
61..Yan, Y. Shimizu, N. Miura and N. Yamazoe, Characteristics and Sensing Mechanism of SOx Sensor Using Stabilized Zirconia and Metal Sulphate, Sensors and Actuators B, 12, p.77-81, 1993.
62.Y. Yan, Y. Shimizu, N. Miura and N. Yamazoe, High-Performance Solid-Electorlyte SOx Sensor Using MgO-Stabilized Zerconia tube and Li2SO4-CaSO4-SiO2 auxiliary phase, Sensors and Actuators B, 20, 81-87, 1994.
63.N. Miura, N. Miura, Y. Yan, M. Sato, S. Ya, Y. Shimizu and N. Yamazoe, Stabilized Zirconia Based CO2 Sensors Combination with Carbonate Auxiliary Phase, Chemistry Letters, p. 393-396, 1994.
64.H. Kurosawa, Y. Yan, N. Miura and N. Yamazoe, Stabilized Zirconia Based Potentiometric Sensor for Nitrogen Oxides, Chemistry Letters, p. 1733-1736, 1994.
65.N. Miura, G. Lu and N. Yamazoe, Mixed Potential Type NOx Sensor Based on Stabilized Zerconia and Oxide Electode, Journal of the Electrochemical Society, 143, p.L33-L35, 1996.
66.E. L. Shoemaker, M .C. Vogt and F. J. Dudek, Cyclic Voltammetry Applied to An Oxygen-ion-conduting Solid Electrolyte as an active Electrocatalytic Gas Sensor, Solid State Ionics, 92, p. 285-292, 1996.
67.A. Vogel, G. Baier and V. Schule, Non-Nernstian Potentiometric Zirconia Sensors:Screening of Potential Working Electrode Materials, SenSors and Actuactors B, 15-16, p.147-150, 1993.
68.N. Miura, T. Raisen, G. Lu andN. Yamazoe, High Selective CO Sensor Using Stabilized Zirconia and A Couple of Oxide Electodes, Sensors and Actuators B, 47, p. 84-89, 1998.
69.F. H. Garzon, R. Mukundan, E. L. Brosha, Solid-State Mixed Potential Gas Sensors: Theory, Experiments and Challenges, Solid State Ionics, 136-137, p. 633-638, 2000.
70.E. L. Brosha, R. Mukundan, D. R. Brown, F. H. Garzon, J. H. Visser, M. Zanini, Z. Zhou and E. M. Logothetis, CO/HC Sensors Based on thin Films of LaCoO3 and La0.8Sr0.2CoO3-δ metal Oxides, Sensors and Actuators B, 69, p. 171-182, 2000.
71.N. Miura, H. Kato, N. Yamazoe, and T. Seiyama, D. Kagaku, 50, p.858, 1982.
72.S. Kuwata, N. Mura, N. Yamazoe and T. Seiyama, Response of A Solid-State Potentiometric sensor using LaF3 to A Small Amount of H2 or CO in Air at Lower temperatures, Chemistry Letters, 8, p. 1295-1296, 1984.
73.Opekar, František; Štulík, Karel, Electrochemical Sensors with Solid Polymer Electrolytes, Analytica Chimica Acta, 385, p. 151-162, 1999.
74.陳柏仁,白金電極在一氧化碳感測器內之感測行為,國立成功大學化學工程研究所碩士論文,1995年。
75.林燦國,電化學式一氧化碳感測元件之設計研究,國立成功大學化學工程研究所碩士論文,1997年。
76.曾坤億,半乾式一氧化碳感測器之研究,國立成功大學化學工程研究所碩士論文,1999年。
77.王瓊紫,以錫修飾白金電極對一氧化碳感測之研究,國立成功大學化學工程研究所碩士論文,2000年。
78.A. Yasuda, T. Fujioka, N. Yamaga and S. Kusanagi, The Constant Potential Amperometrical Response of the Planar Electrochemical Carbon Monoxide Sensor, Reactive Polymers, 15, p. 203-207, 1991.
79.Allen J. Bard, R. Parsons, and J. Jordan, Standard Potentials in Aqueous Solution, Marcel Dekker, Inc., New York, 1985.
80.S. Fujihara, C. Mochizuki, T. Kimura, Formation of LaF3 Microcrystals in Sol-Gel Silica, Journal of Non-Crystalline Solids, 244, p.267-274, 1999.
81.駱永建,氟化鑭白金陶瓷基板之製備與應用於氧氣感測器,東海大學化學工程研究所碩士論文,2000年。
82.A. Yasuda and T. Shimidzu, Electrochemical Carbon Monoxide Sensor with A Nafion® Film, Reactive and Functional Polymers, 41, p. 235-243, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 13. 陶德和,電流式氣體感測器簡介,科儀新知,第15卷,第2期,第64∼70頁,1993年。
2. 12. 蔡嬪嬪,固態離子導體電化學式氣體感測器,材料與社會,第68期,67∼70頁,1992年。
3. 11. 邱秋燕、周澤川,化學感測器之原理與應用,化工,第40卷,第3期,120∼133頁,1993年。
4. 楊冠政. 1991a. 學校課程環境化-學校實施環境教育的首要工作. 環境教育季刊(11): 5-20.
5. 4. 曾明漢,材料與社會,觸媒燃燒型氣體感測器,第68期,57∼61頁,民國81年8月。
6. 9. 邱秋燕、周澤川,化學感測器之原理與應用,化工,第40卷,第3期,120∼133頁,1993年。
7. 1. 鄭煜騰、鄭耀宗,氣體感測器的市場分析與發展概況,科儀新知,18卷5期,76-84頁,民國86年4月。
8. 楊冠政. 1990b. 環境課程發展的模式與程序. 環境教育季刊(9): 3-15.
9. 7. 顧志鴻,MOSFET氣體感測器,材料與社會,第68期,71∼77頁,民國81年8月。
10. 5. 楊明長、曾坤億、王瓊紫,一氧化碳感測器之原理與應用,化工技術,第8卷第2期,158∼167頁,2000年。
11. 汪靜明、楊冠政、劉豐壽、黃月娟. 1996. 愛護水資源與學校環境教育. 環境教育季刊(31):99∼110.
12. 汪靜明. 1996. 臺灣中部區域環境教育課題及推動策略. 環境教育季刊(29):2-16.
13. 汪靜明. 1995a. 河川環境教育理念─建構臺灣河川環境教育計畫. 環境教育季刊(25):19-37.
14. 54. 吳仁彰,固態電解質式一氧化碳感測器的理論研究,量測資訊73期,44-47頁,2000年。
15. 53. 蔡嬪嬪、曾明漢,氣體感測器之簡介、應用及市場,材料與社會68期,50-55頁,民國81年。