(3.239.33.139) 您好!臺灣時間:2021/02/27 01:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭逢祥
研究生(外文):Feng-Hsiang Hsiao
論文名稱:平板式一氧化碳感測器之研究
論文名稱(外文):Studies on the Planar Carbon Monoxide Sensor
指導教授:楊明長
指導教授(外文):M. C. Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:210
中文關鍵詞:感測器一氧化碳平板式錫改質電極固態電解質反應速率常數
外文關鍵詞:tin modified electroderate constantsolid electrolyteplanar sensorcarbon monoxide
相關次數:
  • 被引用被引用:4
  • 點閱點閱:737
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:219
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

有鑑於一氧化碳氣體對人體的危害及其無色無味之特性,研究發展能在常溫中精確感測一氧化碳濃度之氣體感測器便極為重要。平板式感測器之特點在於三個電極在基材板之同一側而深具微小化之潛力。本研究即針對以白金為感測電極(Pt)、Nafion®為電解質之平板式感測器,研究針對其在氮氣與空氣中感測一氧化碳之感測特性,並在白金電極上電鍍錫進行改質(Pt/Sn),實驗與理論分析探討在空氣中與氮氣中錫對於促進白金氧化一氧化碳之效果,研究中亦製備不同膜厚之Nafion®薄膜,探討不同Nafion®膜厚對感測一氧化碳之影響。
研究顯示以白金為感測電極,Nafionâ膜厚為0.71μm,在氮氣流速92 ml/min、相對濕度100%RH中感測800 ppm CO時,電位0.3 V(vs. Au)時有一最大之感測電流值2.76μA,在此電位下感測25∼1000 ppm CO之校正曲線成良好線性關係,其靈敏度為3.36 nA/ppm CO。而其感測靈敏度隨著氣體相對濕度由33%RH增加至100%RH時,靈敏度將隨之由0.47 nA/ppm CO 增加至3.36 nA/ppm CO。其感測800 ppm CO之反應時間t90與回復時間t10亦分別由33%RH時的6.27與8.57分鍾,減短至100%RH時的3.77與4.70分鍾。而當氣體流速從35增至50 ml/min時,感測器之靈敏度會由3.17 nA/ppm CO增至3.3 nA/ppm CO;當氣體流速大於50 ml/min時,感測器之靈敏度不再隨氣體流速增快而有明顯之變化。
在空氣中感測800 ppm CO時,在0.3 V (vs. Au)之最大感測電流為1.90μA,低於在氮氣中之最大感測電流2.76μA,其感測25∼800 ppm CO之校正曲線成良好之線性關係,其靈敏度為2.24 nA/ppm CO。
以Pt/Sn為感測電極,在氮氣中感測800 ppm CO、感測電位在0.2∼0.4 V(vs. Au)時有一最大之感測電流範圍,隨著電位偏正增加錫催化效果、感測電流隨之降低。當定電位0.3 V(vs. Au)感測25∼1000 ppm CO時之靈敏度為4.37 nA/ppm,約為純Pt電極靈敏度3.36 nA/ppm的1.3倍。
Pt/Sn電極在空氣中感測一氧化碳時,在0.3∼0.4 V(vs. Au)有一最大之感測電流範圍,其電位範圍略小於在氮氣中之最大感測範圍。受到氧氣存在之影響,在定電位0.3 V(vs. Au)下感測25∼800 CO時之靈敏度為3.8 nA/ppm CO,低於Pt/Sn電極在氮氣中之靈敏度4.37 nA/ppm,但仍高於Pt電極在氮氣中與空氣中之靈敏度3.36 nA/ppm與2.24 nA/ppm。
進一步推算得到Nafionâ膜厚為0.71μm、氣體流速92ml/min及其相對濕度100%RH時之一氧化碳氣體滲透係數為1.21*10-15 mole•cm/sec•cm-Hg•cm2。據此計算得到Nafionâ膜厚0.71μm、氣體濕度100%RH下,在氮氣中,Pt/Sn在電位範圍0.2∼0.4 V(vs. Au)時其感測800 ppm CO之平均一氧化碳外顯反應常數(KN2, 100)為3.1*10-9 mole/sec•cm-Hg,相較於Pt電極在0.3 V(vs. Au)時的0.61*10-9 mole/sec•cm-Hg,顯示錫金屬能有效增進一氧化碳之氧化反應速率常數達5倍之多。在空氣中,Pt/Sn與Pt電極在0.3 V(vs. Au)之外顯反應速率常數(KN2, 100)分別為0.99*10-9與0.30*10-9 mole/sec•cm-Hg,顯示錫在空氣中依然有催化一氧化碳氧化之效果,但其修飾效果較在氮氣中時略為降低,僅為Pt電極的3.3倍。
此外,改變不同之Nafionâ膜厚時,其校正曲線皆呈良好之線性關係,膜厚為0.52μm在氮氣中感測25∼1000 ppm CO時,其靈敏度為3.95 nA/ppm CO,大於膜厚為6.05μm時的1.12 nA/ppm CO。顯示隨著Nafionâ膜厚減小,其感測一氧化碳之靈敏度會隨之增加。
Abstract

Carbon monoxide (CO) is a colorless, odorless toxic gas. For safety concerns, it is important to develop a CO sensor which can be operated at room temperature with high accuracy. Nafion is one kind of solid polymer electrolyte which can be used at room temperature. Planar CO sensor do have the potential to miniaturization because the three electrodes are on the same side of substrate. In this study, we prepared CO planar sensors with platinum (Pt) and tin modified platinum (Pt/Sn) sensing electrode and Nafion solid electrolyte. The sensing behaviors for this planar sensors with Pt and Pt/Sn in N2 and air will be presented. Besides, the effect of thickness of Nafion film on the CO planar sensors was also studied.
For Pt sensing electrode with 0.71μm recast-Nafion-film, a maximum sensing current of 2.76 μA was found at 0.3 V(vs. Au) for 800 ppm CO at 92 ml/min and in 100%RH N2. At this applied potential, the calibration curve of 25~1000 ppm CO was linear and the sensitivity was 3.36 nA/ppm CO. As the gas humidity decreased from 100%RH to 33%RH, the sensitivity of 25~1000 ppm CO decreased apparently from 3.36 nA/ppm to 1.47 nA/ppm. Besides sensitivity, the response time to reach 90% of steady state sensing current increased form 3.77 to 6.27 and the recover time to reach 10% of steady state current increased form 4.70 to 8.57 min. The gas flow ratel affected the sensitivity only when the gas rate below 50 ml/min. When the gas flow rate decreased from 50 to 35 ml/min, the sensitivity decreased from 3.3 to 3.17 nA/ppm CO.
At 92 ml/min and in 100%RH air, a maximum sensing current of 1.90 μA was found at 0.3 V(vs. Au) for 800 ppm CO with Pt sensing electrode. The calibration curve in the range of 25~800 ppm CO was linear and the sensitivity was 2.24 nA/ppm CO.
For Pt/Sn sensing electrode in CO/N2, a maximum sensing current was in the potential range of 0.2 and 0.4 V (vs. Au) in 800 ppm CO. As the sensor was operated at more positive potential, the sensing current decreased and the improvement of tin was less significant. For sensing 25~1000 ppm CO at 0.3V(vs. Au), the calibration curve was linear and the sensitivity was 4.37 nA/ppm CO, about 1.3 times of that with Pt electrode.
For Pt/Sn electrode in CO/air, there was a maximum sensing current in the range of 0.3~0.4 V (vs. Au) in 800 ppm CO. The range is smaller than that in CO/N2. The sensitivity for 25~1000 ppm CO at 0.3V(vs. Au) was 3.8 nA/ppm CO. This sensitivity was smaller than that in N2, 4.37 nA/ppm CO, but was larger than Pt in N2, 3.36 nA/ppm, and in air, 2.24 nA/ppm.
Permeability coefficient for 0.71 μm recast-Nafion-film at 100%RH for CO was 1.21*10-15 (mole*cm/sec*cm-Hg*cm2). At 100%RH, the apparent rate constant of CO oxidation for Pt/Sn was 3.1*10-9 (mole /sec*cm-Hg) at the potential range of 0.2~0.4 V (vs. Au). This rate constant was about five times of that for Pt electrode at 0.3 V (vs. Au), 0.61*10-9 (mole /sec*cm-Hg). Tin also can raised the apparent rate constant of CO in air from 0.30*10-9 (mole /sec*cm-Hg) with Pt to 0.99*10-9 (mole /sec*cm-Hg).
Increase thickness of Nafion film decreased the sensitivity. The sensitivity of recast-Nafion-film with the thickness of 0.52μm were 3.95 nA/ppm CO which was larger than that with the thickness of 6.05μm, 1.12 nA/ppm CO.
中文摘要……………………………………………………………… Ⅰ
英文摘要……………………………………………………………… Ⅲ
目錄 …………………………………………………………………… Ⅴ
表目錄 ……………………………………………………………… Ⅹ
圖目錄 ……………………………………………………………… ⅩⅠ
符號說明 ……………………………………………………………… ⅩⅦ
第一章 序論………………………………...………………………… 1
1.1 一氧化碳簡介………………………………...………………….. 1
1.2 一氧化碳感測氣之種類與原理………………...……………… 5
1.2.1 觸媒燃燒型一氧化碳感測器……………….…………….. 5
1.2.2 氧化物半導體型一氧化碳感測器………………...…….. 6
1.2.3 場效電晶體型一氧化碳感測器………………………...… 8
1.2.4 石英震盪型一氧化碳感測器……………………………... 10
1.2.5 光學式一氧化碳感測器………………...………………… 11
1.2.6 電化式一氧化碳感測器…………………...……………… 13
1.2.6a 電位式一氧化碳感測器……………………...…... 14
1.2.6b 電流式一氧化碳感測器…………………...……... 18

1.3 Nafionâ簡介……………………………………………..………. 20
1.4 Nafionâ在一氧化碳感測器上之應用……………………..……. 22
1.4.1 厚膜式一氧化碳感測器……………..…………………... 24
1.4.1a 熱壓法……………………………..……………… 26
1.4.1b 真空濺鍍法………………………..……………… 26
1.4.1c 無電電鍍法…………………………..…………… 26
1.4.2 平板式一氧化碳感測器……………………..……………. 28
1.5 錫修飾白金電極…………………………………………………. 32
1.6 研究動機…………………………………………………………. 35
第二章 原理………………………………………………………….. 36
2.1 一氧化碳在白金上之反應機構……………………..…………… 36
2.2 一氧化碳氧化反應之動力表示式…………………...…………… 39
2.2.1 線型吸附一氧化碳氧化反應之動力表示式…………...… 40
2.2.2 橋型吸附一氧化碳氧化反應之動力表示式…………… 52
2.3 一氧化碳感測之數學模式……………………………………… 67
2.3.1 質傳控制區 67
2.3.2 動力控制區 73
2.3.3 質傳和動力混合控制區 74

2.4 錫催化一氧化碳之反應機構…………………..………………… 75
第三章 實驗設備與步驟…………………….…………….. 77
3.1 藥品與材料 ……………………………………….……… 77
3.2 儀器設備……………………………………….……………… 78
3.3 感測元件之製備………………………………..……………. 79
3.3.1 氧化鋁陶瓷基板之前處理…………..…………… 79
3.3.2 感測器電極之製備…………………..…………… 79
3.3.3 外接電路之連結………………………..………… 80
3.3.4 錫修飾白金感測電極(Pt/Sn)之製備………. 80
3.3.5 平板式一氧化碳感測器之製備…………….. 83
3.4 感測電極之電化學特性分析……………………….… 84
3.4.1 電極活性真實面積之測定……………...…… 84
3.4.2 一氧化碳電位剝除法測……………………… 86
3.5 感測元件對一氧化碳感測之特性分析……………… 88
3.5.1 感測系統之組裝……………………………… 88
3.5.2 循環伏安法(Cyclic Voltammertry)………… 91
3.5.3 極化曲線(Polarization Curve)…………..……. 91
3.5.4 一氧化碳濃度對感測電流之關係…..……… 92
第四章 結果與討論……………………………………….………… 94
4.1 Pt感測電極之電化學特性…………………………….……..…… 94
4.1.1 循環伏安法………………………….……….……….…… 94
4.1.2 一氧化碳電位剝除法…………………….….……………. 97
4.2 白金感測電極對一氧化碳之感測行為…………….…….……… 103
4.2.1 循環伏安法…………………………………….…….……... 103
4.2.2定電位法與極化曲線……………………………….……… 106
4.2.3 應答時間與回復時間……………………………….……… 110
4.2.4 靈敏度測試………………………………………….……… 112
4.2.5 氣體相對濕度對感測一氧化碳之影響……………….…… 116
4.2.5a 對電化學阻力之影響...……………………….…… 116
4.2.5b 對感測靈敏度之響 ….………………….………… 123
4.2.5c 對應答時間與回復時間之影響…………………… 128
4.2.6 氣體流速對感測一氧化碳之影響…………….…………… 128
4.2.6a 對靈敏度之影響…………………….……...……… 128
4.2.6b 對應答時間之影響……………………….………. 131
4.2.7 模擬真實空氣對Pt電極感測CO之影響……….………. 135
4.3 Pt/Sn電極對一氧化碳之感測行為……………………..……… 144
4.3.1 定電位法與極化曲線…………………………….……… 144
4.3.2 靈敏度測試………………………………….…………… 149
4.3.3 模擬真實空氣對Pt/Sn電極感測CO之影響…………..… 155
4.4 Nafion膜厚對感測特性之影響…………………………….….. 163
4.4.1 定電位法與極化曲線…………………………………..... 164
4.4.2 對感測靈敏度之影響…………………….……………… 166
4.4.3 對應答時間與回復時間之影響………………….……… 169
4.5 綜合與討論………………………………………………….….. 171
4.5.1 Nafion薄膜滲透係數…………………………….……… 171
4.5.2 Pt電極表面CO濃度與反應速率常數…………..……… 175
4.5.3 錫對一氧化碳感測之影響……………………………… 180
4.5.3a 在無氧存在下對一氧化碳感測之影響……...…. 180
4.5.3b 在氧氣存在下對一氧化碳感測之影響……….… 187
4.5.4 氧氣存在對一氧化碳感測之影響……………………… 190
4.5.5 平板式感測器在質傳與反應混合控制區之感測特性… 192
第五章 結論………………………………………………………… 195
建議事項………………………………………………………..…….. 197
參考文獻……………………………………………………………… 198
參 考 文 獻

1. University Microfilms international, ”Carbon Monoxide in the Home Environment”, U-M-I Dissertation information service.
2. 賴耿陽,室內空氣污染,台灣復文興業股份有限公司,第9∼12頁(1993)。
3. Air Quality Criteria for Carbon Monoxide, Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency (1979).
4. 行政院勞工委員會,勞工作業環境空氣中有害物質容許濃度標準 (1995)。
5. 行政院環境保護署,室內空氣中一氧化碳污染問題研究(1992)。
6. 曾明漢,觸媒燃燒型氣體感測器,材料與社會,第68期,第57~61頁(1992)。
7. T. Kobayashi, M. Haruta, S. Tsubata and H. Sano, Thin Films of Supported Gold Catalysts for CO Detection, Sensor and Actuators B, 1, 222-226 (1990).
8. 陳一誠,金屬氧化物半導體型氣體感測物,材料與社會,第68期,第62∼66頁(1992)。
9. R. Sanjines, F. levy, V. Demarne and A. Grisel, Some Aspects of the Interaction of Oxygen with Polycrystalline SnOx Thin Films, Sensors and ActuatorsB, 1, 176-182 (1990).
10. K. Steiner, U. Hoefer, G. Kuhner, G. Sulz and E. Wabner, Ca- and Pt-Catalysed Thin-Film SnO2 Gas Sensors for CO and CO2 Detection, Sensor and Actuators B, 24-25, 529-531 (1995).
11. M. C. Horrillo, J. Gutierrez, L. Ares, J. I. Robla, I. Sayago, J. Getino and J. A. Agapito, The Influence of the Tin Oxide Deposition Technique On the Sensitivity to CO, Sensors and Actuators B, 24-25, 507-511 (1995).
12. E. W. Williams and A.G. Keeling, Thick Film Tin Oxide Sensors for Detecting Carbon Monoxide at Room Temperature, Journal of Materials science: Materials in Electronics 9, 51-54 (1998).
13. K. Fukui and M. Nakane, CO Gas Sensor Based on Au-La2O3 Loaded SnO2 Ceramic, Sensors and Actuators B, 24-25, 486-490 (1995).
14. M. Jaegle, J. Wollenstein, T. Meisinger, H. Bottner, G. Muller, T. Becker and C. Bosch-v.Braunmuhl, Micromachined Thin Film SnO2 Gas Sensors in Temperature-Pulsed Operation Mode, Sensors and Actuator B, 57, (1999) 130-134.
15. 顧志鴻,MOSFET氣體感測器,材料與社會,第68期,第71∼77頁(1992)。
16. 眭曉林,固態化學感測元件之積體化設計,材料與科學,第60期,第56~61頁 (1991)。
17. I. Lundstrom, M. S. Shivaraman and L. Lundkvist, A Hydrogen- Sensitive MOS Field-Effect Transistor, Applied Physics Letters, 26, 55-57 (1975).
18. C. Chistofides and A. Mandelis, Solid-State Sensors for Trace Hydrogen Gas Detection, Journal of Applied Mechanics and Technical Physics, 68, R1-R30 (1990).
19. H. Grange and G. Delapierre, Polymer-Based Capacitive Hygrometers,
20. M. Hijikigawa, and T. Sugihara, J. Tanaka, M. Watanabe, Int. Conf. On Solid State Sensors and Actuators, Philadelphia, PA, USA, IEEE, New York, P.221 (1985).
21. Gurbuz, W. P. Kang, J. L. Davidson and D. V. Kerns, A Novel Oxygen Gas Sensor Utilizing Thin Film Diamond Diode with Catalyzed Tin Oxide Electrode, Sensors and Actuators, B, 35-36, 303-307 (1996).
22. Y. Gurbuz, W. P. Kang, J. L. Davidson and D. V. Kerns, A New Diode-Based Carbon Monoxide Gas Sensor Utilizing Pt-SnOX/Diamond, Sensors and Actuators B, 56, 151-154 (1999).
23. Fukuda, K. Kasama and S. Nomura, Highly Sensitive MISFET Sensors with Porous Pt-SnO2 Gate Electrode for CO Gas Sensing Applications, Sensors and Actuators, B, 64, 163-168 (2000).
24. 邱秋燕、周澤川,化學感測器之原理與應用,化工,第40卷,第3期,第120∼133頁(1993)。
25. Y. S. Fung and C. C. Wong, Determination of Carbon Monoxide in Ambient Air Using Piezoelectric Crystal Sorption Detection, Analytica Chimica Acta, 456, 227-239 (2002).
26. T. Kobayashi, M. Haruta, H. Sano and B. Delmon, Optical Detection of CO in Air Through Catalytic Chromism of Metal-Oxide Thin Films, Proc. 3rd Int. Meet. Chemical Sensors, Cleveland, OH, , 318-321 (1990).
27. T. Kobayashi, M. Haruta and M. Ando, Enhancing Effect of Gold Deposition in the Optical Detection of Reducing Gases in Air by Metal Oxide Thin Films, sensors and Actuators, B, 13-14, 545-546 (1993).
28. M. Ando, T. Kobayashi and M. Haruta, Enhancement in the Optical CO Sensitivity of NiO Film by the Deposition of Ultrafine Gold Particles, Journal of the Chemical Society. Faraday Transactions , 90 1011-1013 (1994).
29. Masanori Ando, Tetsuhiko Kobayashi and Masatake Haruta, Optical CO Detection by Use of CuO/Au Composite Films, Sensors and Actuators, B, 24-25 854-853 (1995).
30. K. Noda, T. Kobayashi and M. Ando, Carbon Monoxide Sensor and Method of Detecting Carbon Monoxide, U.S. Patent, 5644116 (1997).
31. A. M. Azad, S. A. Akbar, S. G. Nhaisalkar and K. S. Goto, Solid-State Gas Sensor: a Review, J. Electrochem. Soc., 139, 3690-3704 (1992).
32. G. He, T. Goto, T. Narushima and Y. Iguchi, Electrical Conductuvuty of Alkaline-Earth Metal β-Aluminas and their Application to a CO2 Gas Sensor, Solid State Ionics, 121, 313-319, (1999).
33. T. Hibino, K. Ushiki and Y. Kuwahara, Electrochemical Oxygen Pump Using CeO2-Based Solid Electrolyte for NOX Detection Independent of O2 Concentration, Solid State Ionics, 93, 309-314 (1997).
34. Y. Yang and C. C. Liu, Development of a NAXICON-Based Amperometric Carbon Dioxide Sensor, Sensors and Actuators, B, 1, 62, 30-34 (2000).
35. 朱立文,鈉超離子導體NASICON之製備與在陣列式感測器上之應用,東海大學化工所碩士論文(2000)。
36. N. Li, T. C. Tan and H. C. Zeng, High-Temperature Carbon Monoxide Potentiometric Sensor, J. Electrochem. Soc., 140, 4, 1068-1073 (1993).
37. N. Docauier, and S. Candel, Combustion control and Sensors: a Review, Progress in Energy and Combustion Science, 28, 107-150 (2002).
38. J. H. Lee, B. K. Kim, K. Y. Lee, H. I. Kim and K. W. Han, A New Catalyst Monitoring Sensor for Gasoline Engine Using YSZ-Al2O3 as Solid Electrolyte and Gas Diffusion Barrier, Sensors and Actuators, B, 59, 9-15 (1999).
39. N. Miura, T. Raisen, G. Lu and N. Yamazoe, Highly Selective CO Sensor Using Stabilized Zirconia and a Couple of oxide Electrodes, Sensors and Actuators, B, 47, 84-91 (1998).
40. 莊睦賢,氧化鋯型固態電解質氧氣感測氣之研發,國立台灣科技大學化學工程研究所碩士論文(2000)。
41. 鄭銘堯,YSZ電解質一氧化碳感測器之研究,國立台灣科技大學化學工程研究所碩士論文(2000)。
42. E. Siebert, J. Fouletier and S. Vilminot, Characteristics of an Oxygen Gauge at Temperature Lower than 200℃, Solid State Ionics, 9/10, 1291-1294 (1983).
43. G. Couturier, Y. Danto, R. Gibaud and J. Salardenne, Influence of Oxygen on Electrical Properties of β-PbF2 Films, Solid State Ionics, 5, 621-624 (1981).
44. A. Pelloux, J. P. Quessada, J. Fouletier, P. Farby and M. Kleitz, Utilization of a Dilute Solid Electrolyte in an Oxygen Gauge, Solid State Ionics, 1, 343-354 (1980).
45. N. Yamazoe, J. Hisamoto, S. kuwata and N. Miura, Potentiometric Solid-State Oxygen Sensor Using Lanthanum Fluoride Operative at Room Temperature, Sensors and Actuators, 12, 415-423 (1987).
46. S. Kuwata, N. Mura, N. Yamazoe and T. Seiyama, A Potentiometric Oxygen Sensor Using LaF3 Single Crystal Operative at Room Temperature, Chemistry Letters, 8, 1295-1296 (1984).
47. 駱永建,氟化鑭/白金/陶瓷基板之製備與應用於氧氣感測器,東海大學化學工程研究所碩士論文(2000)。
48. R. B. Moor and C. R. martin, Chemical and Morphological Properties of Solution-Cast Perfluorosulfonate Ionomers, Macromolecules, 21, 1334 -1339 (1998).
49. G. Gebel, P. Aldebert and M. Pineri, Sturcture and Related Properties of Solution-Cast Perfluorosulfonated Ionomer Films, Macromolexules, 20, 1425-1428 (1987).
50. K. Broka and P. Ekdunge, Oxygen and Hydrogen Permeation Properties and Water Uptake of Nafion 117 Membrane and Recast Film for PEM Fuel Cell, Journal of Applied Electrochemistry, 27, 117-123 (1997).
51. L. A. Zook and J. Leddy, Density, and Solubility of Nafion: Recast, Annealed, and Commercial films, Anal. Chem., 68, 3793-3796 (1996).
52. H. G. Haubold, Th. Vad, H. Jungbluth and P. Hiller, Nano Structure of NAFION: a SAXS Study, Electrochimica Acta, 46, 1559-1563 (2001).
53. M. Ludvigsson, J. Lindgren and J. Tegenfeldt, FTIR Study of Water in Cast Nafion films, Electrochimica Acta, 45, 2267-2271 (2000).
54. Z. Siroma, T. Ioroi, N. Fujieara and K. Yasuda, Proton Conductivity Along Interface in Thin Cast Film of Nafionâ, Electrochemistry Communications, 4, 143-145 (2002).
55. A. Gruger, A. Regis, T. Schmatko and P. Colomban, Nanostructure of Nafionâ Membranes at Different States of Hydration an IR and Raman Study, Vibrational Spectroscopy, 26, 215-225 (2001).
56. E. Ivers-Tiffee, K. H. Hardtl, W. Menesklou and J. Riegel, Principles of Solid State Oxygen Sensors for Lean Combustion Gas Control, Electrochimica Acta, 47, 807-814 (2001).
57. 陶德和,電流式氣體感測器簡介,量測資訊,第35期,第1卷,39-45(1994)。
58. E. L. Shoemaker, M.C. Vogt and F. J. Dudek, Cyclic Voltammetry Applied to an Oxygen-Ion-Conducting Solid Electrolytic Gas Sensor, Solid State ionics, 92, 285-292 (1996).
59. Y. Tan and T. C. Tan, An Amperometric Carbon Monoxide Sensor Based on the Steady-State Difference Response Technique, Sensors and Actuators B, 28, 113-121 (1995).
60. P. Gode, G. Lindbergh and G. Sundholm, In-Situ Measurements of Gas Permeability in Fuel Cell Membranes Using a Cylindrical Microelectrode, Journal of Electroanalytical Chemistry, 518, 115-122 (2002).
61. E. J. Taylor, E. B. Anderson and N. R. K. Vilambi, Preparation of High-Platinum-Utilization Gas Diffusion Electrodes for Proton-Exchange- Membrane Fuel Cells, J. Electrochem. Soc., 139, 5 (1992)
62. A. Eisenberg, and H. L. Yeager, Perfluorinsted Ionomer Membranes, ACS Symp. Ser., NO180, American Chemical Society, Washington DC (1982).
63. V. N. Fateev, O. V. Archakov, E. K. Lyutikova, L. N. Kulikova and V. I. Porembskii, Water Electrolysis in Systems with Solid Polymer Electrolyte, Russian J. Electrochem., Vol. 29, pp. 702~ 709 (1993).
64. J. Jorissen, Ion Exchange Membranes as Solid Polymer Electrolytes in Electro-Organic Method to Organic Electrochemistry(XIV), J. Electrochemica Acta, Vol. 41, No. 4, pp. 553 (1996).
65. 陳惠玲,固態高分子電解質電極之製備及其在有機合成上之應用,國立成功大學化工研究所碩士論文(1992)。
66. K. C. HO and W. T. Hung, An Amperometric NO2 Gas Sensor Based on Pt/Nafionâ Electrode, Sensors and Actuators B, 79, 11-16 (2001).
67. R. Toniolo, P. Geatti, G. Bontempelli and G. Schiavon, Amperometric Monitoring of Hydrogen Peroxide in Workplace Atmospheres by Electrodes Supported on Ion-Exchange Membranes, Journla of Electroanalytical Chemistry, 514, 123-128 (2001).
68. F. Opekar and K. Stulik, Electrochemical Sensors with Solid Polymer electrolytes, Analytica Chimica Acta, 385, 151-162 (1999).
69. T. Otagawa, M. Madou, S. Wing and J. Rich-Alexander, Planar Microelectrochemical Carbon Monoxide Sensors, Sensors and Actuators B, 1, 319-325 (1990).
70. A. Yasuda, T. Fujioka, N. Yamaga and S. Kusanagi, The Constant Potential Amperometrical Response of the Planar Electtochemical Carbon Monoxide Sensor, Reactive Polymers, 15, 203-207 (1991).
71. A. Yasuda, K. Doi, N. Yamaga, T. Fujioka and S. Kusanagi, Mechanism of the Sensitivity of the Planar CO Sensor and Its Dependency on Humidity, J. Electrochem. Soc., 139, 11, 3224-3229 (1992).
72. A. Yasuda, N. Yamaga, K. Doi, T. Fujioka and S. Kusanagi, Improvement in Durability of the planar CO Sensor With a Nafion Laminate, J. Electroanal. Chem., 354, 39 (1993).
73. A. Yasuda, N. Ymaga, K. Doi, and T. Fujioka, Life-Elongation Mechanism of the Polymer-Electrolyte Lamination on a CO Sensor, Sensor and ActuatorsB, 21, 229-236 (1994).
74. A. Yasuda and T. Shimidzu, Electrochemical Carbon monoxide Sensor with a Nafion Film, Reactive and Functional Polymer, 41, 235-243 (1999).
75. L. R. Jordan and P. C. Hauser, Electrochemical Sensor for Acetylene, Anal. Chem., 69, 2669-2672 (1997).
76. S. Sotiropoulos and K. Wallgren, Solid-State Microelectrode Oxygen Sensors, Analytica Chimica Acta, 388,51-62 (1999).
77. 林燦國,電化學式一氧化碳感測元件之設計與研究,國立成功大學化學工程研究所碩士論文(1997)。
78. 曾坤億,半乾式一氧化碳感測器之研究,國立成功大學化學工程研究所碩士論文(1999)。
79. 王瓊紫,以錫修飾白金電極對一氧化碳感測之研究,國立成功大學化學工程研究所碩士論文(2000)。
80. F. H. Hsiao and M. C. Yang, Effect of Sn on Pt Electrode for Planar CO Sensor, 201st Meeting of The Electrochemical Society, abstract NO. 1518 (2002).
81. Zempachi Ogumi, Tohru Kuroe and Zen-Ichiro Takehara, Gas Permeation In SPE Method-Ⅱ. Oxygen and Hydrogen Permeation Through Nafion, J. Electrochem. Soc., Vol. 132, No. 11, pp. 2601~2605 (1985).
82. T. Arimura, D. Ostrovskii, T. Okada and G. Xie, The Effect of Additives on the Ionic Conductivity Performances of Perfluoroalkyl Sulfonated Ionomer Membranes, Solid State Ionics, 118, 1-10 (1999).
83. M. S. Wilson and S. Gottesfeld, High Performance Catalyzed Membranes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 139, 2 (1992).
84. S. B. Lee, A. Cocco, D. Keyvani and G. J. Maclay, Humidity Dependence of Carbon Monoxide Oxidation Rate in a Nafion-Based Electrochemical Cell, J. Electrochem. Soc., 142, 157~160 (1995).
85. F. Opekar, Detection of Hydrogen in Air with a Detector Containing a Nafion Membrane Metalized on Both Sides, J. Electroanal. Chem., Vol. 260, pp.451 (1989).
86. Z. Z. Ogumi, K. Inatomi, J. T. Hinatsu and Z. I. Takehara, Application of the SPE Method to Organic Electrochemistry—ⅩⅢ. Oxidation of Geraniol on Mn, Pt-Nafion, Electrochimica Acta, Vol. 37(7), pp. 1295 (1992).
87. P. Millet, R. Durand, E. Dartyge, G. Tourillon and A. Fontaine, Precipitation of Metallic into Nafion Ionomer Membranes-I. Experimental Results, J. Electrochem. Soc., Vol. 140(5), pp. 1373~1380 (1993).
88. P. Millet, A. Michas and R. Durand, A Solid Polymer Electrolyte-Based Ethanol Gas Sensor, J. Appl. Electrochem., Vol. 26, pp. 933 (1996).
89. 楊金成,應用Pt/Nafion及Pt/Nafion/Pt薄膜電極感測一氧化氮,台灣大學化工所碩士論文(1997)。
90. P. Hrncirova, and F. Opekar, Effect of gas humidity on the Potential of Pseudoreference Pt/Air Electrode in Amperometric Solid-State Gas Sensors, Sensors and Actuators B, 81, 329-333 (2002).
91. J. Divisek, H. F. Oetjen, V. Peinecke, V. m. Schmidt and U. Stimming, Components for PEM fuel cell systems using hydrogen and CO containing fuel, Electrochimica Acta, 43, 24 3811-3815 (1998).
92. X. Wang, I. M. Hsing, Y. J. Leng, P. L. Yue, Model Interpretation of Electrochemical Impedance Spectroscopy and Polarization Behavior of H2/CO Mixture Oxidation in Polymer Electrolyte Fuel Cells, Electrochimica Acta, 46, 4397-4405 (2001).
93. H. Lei, D. Renock, D. Tarnowski, B. Glomski, A. Schechter and M. Wixom, Pt-Mo Catalyst for CO Tolerance in PEMFC, 201st Meeting of The Electrochemical Society, abstract NO.197 (2002).
94. D. C. Papageorgopoulos, M. Keijzer, J. B. J. Veldhuis and F. A. de Bruijn, CO Tolerance of Pd Rich Platinum Palladium Carbon Supported Electrocatalysts for PEMFC Applications, 201st Meeting of The Electrochemical Society, abstract NO.199 (2002).
95. J. Llorca, N. Homs, J. Arana, J. Sales and P. Ramirez de la Piscina, FTIR Study of the Interaction of CO and CO2 with Silica-Supported PtSn Alloy, Applied Surface Science, 134, 217-224 (1998).
96. F. Coloma, A. S. Escribano, J. L. G. Fierro, F. R. Reinoso, Crotonaldehyde hydrogenation over bimetallic Pt-Sn Catalysts Supported on Pregraphitized Carbon Black. Effect of the Sn/Pt Atomic Ratio, Applied Catalysis A: General, 136, 231-248 (1996).
97. C. T. Hable and M. S. Wrighton, Electrocatalytic Oxidation of Methanol by Assemblies of Platinum/Tin Catalyst Particles in a Conducting Polyaniline Matrix, Langmuir, 7, 7 (1991).
98. W. T. Napporn, J. M. Leger and C. Lamy, Electrocatalytic Oxidation of Carbon Monoxide at Lower Potentials on Platinum-Based Alloys Incorporated in Polyaniline, Journal of Electroanalytical Chemistry, 408, 141-147 (1996).
99. Y. Morimoto and E. B. Yeager, CO Oxidation on Smooth and High Area Pt, Pt-Ru and Pt-Sn Electrodes, Journal of Electroanalytical Chemistry, 441, 77-81 (1998).
100. Y. Morimoto and E. B. Yeager, Comparison of Methanol Oxidations on Pt, Pt/Ru and Pt/Sn electrodes, 444, 95-100 (1998).
101. Z. Liu, L. M. Gan, J. Y. Lee and M. Han, Electrooxidation of Methanol on Pt-Ru Catalysts Supported on Different Carbon Materials, 201st meeting of The Electrochemical Society, Abstract NO. 157 (2002).
102. C. Witham and S. R. Narayanan, Glancing Angle Sputter Deposition of PtRu for the Anodic Oxidation of Methanol, 201st meeting of The Electrochemical Society, Abstract NO. 192 (2002).
103. W. F. Lin, M. S. Zei, m. Eiswirth and G. Ertl, Electrocatalytic Activity of Ru-Modified Pt(111) Electrodes toward CO Oxidation, The Journal of Physical Chemistry B, 103, 33, 6968-6977 (1999).
104. L. Xiong, B. Yang, A. M. Kannan and A. Manthiram, Nanostructured Pt-M and Pt-Ru-M (M = Fe, Co and Cu) Catalysts for PEM Fuel Cell, 201st meeting of The Electrochemical Society, Abstract NO. 191 (2002).
105. S. A. Bilmes and A. J. Arvia, The Electro-oxidation of CO-adsorbates on Different Platinum Electrodes in Acid Solution, Journal of Electroanalytical Chemistry, 361, 159-167 (1993).
106. G. Kohlmayr and P. Stonehart, Adsorption Kinetics for Carbon Monoxide on Platinum in Hot Phosphoric Acid, Electrochemica Acta, 18, 211-223 (1973).
107. M. W. Breiter, On the Nature of Reduced Carbon Dioxide, Electrochimica Acta, 12, 1213-1218 (1967).
108. A. V. Shiepakov, V. N. Andreev and V. E. Kazarinov, Adsorption of CO on Platinized Platinum, Sco. Electrochem., 25, 64-70 (1989).
109. S. Gilman, The Mechanism of Electrochemical Oxidation of Carbon Monoxide and Methanol on Platinum. Ⅱ. The “Reactant-pair” Mechanism for Electrochemical Oxidation of Carbon Monoxide and Methanol, J. Phy. Chem., 68, 70-80 (1964).
110. G. Estiu, S. Maluendes, E. A. Castro and A. J. Arvia, A Quantum-Chemistry Approach to the Electro-Oxidation Mechanism of Adsorbed Carbon Monoxide on Platinum Single-Crystal Clusters, J. Electroanal. Chem., 238, 303-318 (1990)
111. B. Beden and C. Lamy, The electrooxidation of CO: A Test Reaction in Electrocatalysis, Electrochimica Acta, 35, 4, 691-704 (1990).
112. B. J. Piersma and E. Gileadi, The Mechanism of Electrochemical Oxidation of Organic Fuels, Modern Aspects of Electrochemistry, Ⅳ, 47-175, J. O’M Brockris Editor, Butterworths London (1966).
113. Gulten Gurdag and Thomas Hahn, The oxidation of carbon monoxide on platinum-supported binary oxide catalysts, Applied Catalysis A, 192, 51-55 (2000).
114. K. M. Khan, E. V. Albano, Catalytic oxidation of carbon monoxide: a lattice gas non-thermal Langmuir-Hinshelwood mechanism, Chemical Physics, 276, 129-137.
115 N. P. Lebedeva, M.T.M. Koper, J. M. Feliu, R.A. van Santen, Mechanism and Kinetics of the Electrochemical CO Adlayer Oxidation on Pt(111), Hournal of Electroanalytical Chemistry, 524-525, 242-251 (2002).
116. Andreas Eichler, CO Oxidation on Transition Metal Surfaces: Reaction Rates From First Principle, Surface Science 498, 314-320 (2002).
117. V. P. Zhdanov, B. Kasemo, Kinetic Oscillations On nm-Sized Catalyst Particles: Oxide Model, Surface Science 511, 23-33 (2002).
118. V. N. Fateev, E. K. Lyutikova and R. Amadelli, Oxidation of Carbon Monoxide on Platinum in Composite Electrodes Based on Solid Polymer Electrolytes, Russian Journal of Electrochemistry, 35, 2, 183-187 (1999).
119. P. Meriaudeau, C. Naccache, A. Thangaraj, C. L. Bianchi, R. Carli, V. Vishvanathan and S. Narayanan, Studies on PtxSny Bimetallics in NaY Ⅰ. Preparation and Characterization, Journal of Catalysis, 154, 345-354 (1995).
120. J. L. Margitfalvi, I Borbath, M. Hegedus, S. Gobolos and F.Lonyi, New Approaches to Prepare Supported Sn-Pt Bimetallic Catalysts, React. Kinet. Catal. Lett., 68, 1, 133-143 (1999).
121. E. P. M. Leiva, E. Santos, M. C. Giordano, R. M. Cervino and A. J. Arvia, Voltammetric Electro-Oxidation of Carbon Monoxide Previously Adsorbed on Electrochemically Modified Platinum Electrodes, J. Electrochem. Soc., 133, 1660-1662 (1986).
122. S. A. Bilmes, N. R. D. Tacconi and A. J. Arvia, The Electrooxidation of Chemisorbed CO on Polycrystalline Platinum. A Mechanistic Interpretation of the Anodic Current Peak Multiplicity, J. Electroanal. Chem., 164, 129-143 (1984).
123. B. E. Conway, J. O. Bockris, E. Yeager, S. U. M. Khan, R. E. White, Comprehensive Treatise of Electrochemistry Volume7 kinetics and Mechanisms of Electrode Processes, 301-389.
124. R. L. David, CRC handbook of chemistry and physics, 15-25, 1913-1995.
125. A. J. Bard, R. Parsons and J. Jordan, Standart Potentials In Aqueous Solution, Marcel Dekker, Inc., 189-237.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔