跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝培煥
研究生(外文):Pei-Huan Hsieh
論文名稱:鎳-氧化鋁複合鍍電鍍行為對鍍層性質之影響
論文名稱(外文):The Effect of the Plating Conditions of Ni-Al2O3 Composite on the Deposit Properties
指導教授:楊明長
指導教授(外文):M. C. Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:186
中文關鍵詞:複合鍍鎳-氧化鋁
外文關鍵詞:Ni-Al2O3Electrodeposited composite coating
相關次數:
  • 被引用被引用:27
  • 點閱點閱:873
  • 評分評分:
  • 下載下載:225
  • 收藏至我的研究室書目清單書目收藏:0
發展複合鍍層,乃為了因應工業上各種嚴苛環境之要求,開發較單一鍍層適用之材料,而以電鍍的方式來製作複合材料為一相當實用的技術,稱之為複合電鍍,其操作的簡便與經濟,使得與複合電鍍相關的論文及專利逐年大增,工業應用亦日亦廣泛。
以複合電鍍方式製備Ni-Al2O3複合鍍層為一具有耐磨耗、抗氧化耐蝕之材料;由於鍍液中添加固體微粒與金屬離子共析,鍍浴系統的複雜性也相對提高,本研究探討析鍍條件對鍍層性質及其物理與化學特性間相互之關係,將彼此之關聯性加以歸納整理。
根據研究結果指出,鍍層之硬度、耐磨耗性及抗腐蝕性,主要受鍍層中氧化鋁顆粒含量之影響;鍍層之電流效率、密度、析鍍速率、鍍層結構以及鍍層中氧化鋁顆粒含量皆會受電流密度影響,而鍍層硬度、耐磨耗性、抗腐蝕性則不受影響。
鍍液pH值主要影響電流效率、析鍍速率、鍍層結構及鍍層中氧化鋁顆粒含量,而pH值本身對鍍層硬度、耐磨耗性、耐腐蝕性亦有影響。析鍍溫度會影響鍍層之電流效率、鍍層結構以及鍍層中氧化鋁顆粒之析鍍量。另外溫度對於鍍層硬度、耐磨耗性、耐腐蝕性之影響並不低於氧化鋁含量之影響。
鍍液流速僅改變氧化鋁顆粒之析鍍量,而不影響鍍層之電流效率、密度、析鍍速率、鍍層結構及表面粗糙度等基本性質,對於鍍層硬度、耐磨耗性以及抗腐蝕性亦均無影響。改變鍍液中氧化鋁粉末之添加量,不影響電流效率、鍍層結構性質,僅改變鍍層中氧化鋁顆粒之析鍍量。並造成鍍層密度與析鍍速率的些微變化。提高氧化鋁之添加量可提高鍍層硬度、耐磨耗程度,並增加抗腐蝕的能力。
Composite coating developed to meet the requirement of serious environment in industry is more suitable than simplex coating. Method used to fabricate the composite coating by electrodeposition is called composite electrodeposition. The papers and patents concerning with composite electrodeposition gradually increase in recent years due to the advantage of simplicity and economy. This technology has been widely used in industry.
Ni-Al2O3 composite coating manufactured by composite electro-deposition has the properties for wear resistance and anti-corrosion. Solid particles were added into bath to co-deposit with metal ions. In this case of co-deposition, the system was more complicated than that without solid particles. The effect of electrodeposition condition on the properties of coating and relationship between physical and chemical characteristic were studied in this thesis.
From the results in this research, hardness, wear resistance and anti-corrosion were influenced by the content of alumina. According to results of the research, the stiffness, abrasion resistance and corrosion resistance will effect by content of the aluminum oxide grain, which embed in the composites by electrophoresis deposition. The current efficiency, composites density, electrodeposition rate and the structure of the composites were depended on current density which was not influence of the chemical and mechanical properties, ie. coatings stiffness, coatings abrasion resistance and coatings corrosion resistance.
The main influence of current efficient, electrodeposition rate and structure of composites was the pH value of the plating bath. It also affected the stiffness, abrasion resistance and corrosion resistance.
The property of current efficiency, structure of composites and the amount of alumina in the composite were changed by operating temperature. The temperature effect was more sensitive than the amount of alumina grains in the composites compared with the stiffness, abrasion resistance and corrosion resistance of the composites.
The flow rate of plating bath just only changed the amount of alumina grains of the composites and had no influence on current efficiency, composites density, electrodeposition rate structure of composites and surface roughness, stiffness, abrasion resistance and corrosion resistance.
Changing the amount of alumina grain in the plating bath didn’t affect the current efficiency and composite structure except the amount of alumina grain in composites. The different amount of alumina grain in composites caused the change of composite density and electrodeposition rate. Increasing the amount of alumina grain of the plating bath improved the stiffness, abrasion resistance and the ability of corrosion resistance.
中文摘要………………………………………………I
英文摘要………………………………………………III
誌謝……………………………………………………V
目錄……………………………………………………VI
圖目錄…………………………………………………XI
表目錄…………………………………………………XVII
符號說明………………………………………………XVIII

第一章 緒 論……………………………………………1
1-1複合鍍層之介紹………………………………………1
1-2複合電鍍之簡介………………………………………2
1-3複合電鍍製程之優缺點………………………………4
1-4複合電鍍之應用………………………………………5
1-4-1耐磨耗鍍層…………………………………………5
1-4-2自潤性鍍層…………………………………………5
1-4-3耐蝕抗氧化鍍層……………………………………6
1-4-4分散強化物理性質之鍍層…………………………6
1-5文獻回顧………………………………………………6
1-6研究動機………………………………………………8

第二章 原 理……………………………………………10
2-1鎳的電解析鍍…………………………………………10
2-1-1鎳析鍍原理…………………………………………10
2-1-2鍍液中各成分的影響………………………………12
2-1-3常見的鍍液種類與應用……………………………13
2-1-4影響析鍍的因素……………………………………17
2-2複合電鍍的共析機構…………………………………18
2-2-1早期之共析機構-二階段…………………………19
2-2-2現今之共沈積機構-五階段………………………21
2-3析鍍液中粉末特性……………………………………23
2-3-1粉末表面特性………………………………………23
2-3-2溶液中粉末分散現象………………………………24

第三章 實驗設備與步驟…………………………………28
3-1藥品……………………………………………………28
3-2儀器設備………………………………………………29
3-3實驗裝置與步驟………………………………………31
3-3-1析鍍液的配製………………………………………34
3-3-2基材的前處理………………………………………34
3-3-3析鍍操作步驟………………………………………36
3-3-4試片後處理…………………………………………37
3-4鍍層基本性質分析……………………………………37
3-4-1鍍層密度與電流效率及電鍍速率之分析…………37
3-4-2鍍層中氧化鋁粉含量之分析………………………40
3-5鍍層物理與化學性質之分析…………………………43
3-5-1鍍層硬度之分析……………………………………43
3-5-2鍍層耐磨耗強度之分析……………………………43

第四章 析鍍條件對鍍層基本性質的影響………………46
4-1電流密度對鍍層性質的影響…………………………46
4-1-1電流密度對鎳電流效率之影響……………………46
4-1-2電流密度對鍍層密度之影響………………………52
4-1-3電流密度對析鍍速率之影響………………………58
4-1-4電流密度對鍍層結構及表面狀態之影響…………58
4-1-5電流密度對鍍層中氧化鋁粉末含量之影響………69
4-2鍍液pH值對鍍層性質的影響…………………………78
4-2-1鍍液pH值對鎳電流效率之影響……………………78
4-2-2鍍液pH值對鍍層密度之影響………………………81
4-2-3鍍液pH值對析鍍速率之影響………………………85
4-2-4鍍液pH值對鍍層結構及表面狀態之影響…………88
4-2-5鍍液pH值對鍍層中氧化鋁粉末含量之影響………93
4-3鍍液流速對鍍層性質的影響…………………………98
4-3-1鍍液流速對鎳電流效率之影響……………………98
4-3-2鍍液流速對鍍層密度之影響………………………98
4-3-3鍍液流速對析鍍速率之影響………………………101
4-3-4鍍液流速對鍍層結構及表面狀態之影響…………101
4-3-5鍍液流速對鍍層中氧化鋁粉末含量之影響………105
4-4鍍液中氧化鋁粉添加量對鍍層性質的影響…………111
4-4-1鍍液中氧化鋁粉添加量對鎳電流效率之影響……111
4-4-2鍍液中氧化鋁粉添加量對鍍層密度之影響………111
4-4-3鍍液中氧化鋁粉添加量對析鍍速率之影響………112
4-4-4鍍液中氧化鋁粉添加量對鍍層結構及表面狀態之影響…………………………………………………………112
4-4-5鍍液中氧化鋁粉添加量對鍍層中氧化鋁粉末含量之影響………………………………………………………121
4-5析鍍溫度對鍍層性質的影響…………………………124
4-5-1析鍍溫度對鎳電流效率之影響……………………124
4-5-2析鍍溫度對鍍層密度之影響………………………124
4-5-3析鍍溫度對析鍍速率之影響………………………125
4-5-4析鍍溫度對鍍層結構及表面狀態之影響…………125
4-5-5析鍍溫度對鍍層中氧化鋁粉末含量之影響………132

第五章 鍍層物理與化學性質的探討……………………134
5-1鍍層硬度之分析………………………………………134
5-1-1電流密度對鍍層硬度之影響………………………134
5-1-2鍍液pH值對鍍層硬度之影響………………………135
5-1-3鍍液中氧化鋁粉添加量對鍍層硬度之影響………140
5-1-4鍍液流速對鍍層硬度之影響………………………140
5-1-5析鍍溫度對鍍層硬度之影響………………………141
5-2鍍層耐磨耗強度之分析………………………………147
5-2-1電流密度對鍍層耐磨耗強度之影響………………147
5-2-2鍍液pH值對鍍層耐磨耗強度之影響………………152
5-2-3鍍液中氧化鋁粉添加量對鍍層耐磨耗強度之影響153
5-2-4鍍液流速對鍍層耐磨耗強度之影響………………160
5-2-5析鍍溫度對鍍層耐磨耗強度之影響………………161

第六章 綜合討論…………………………………………170
6-1析鍍條件對鍍層基本性質的影響……………………170
6-2鍍層物理與化學特性的探討…………………………175

第七章 結論與建議………………………………………180
7-1結論……………………………………………………180
7-2建議事項………………………………………………181

參考文獻…………………………………………………182
[1] F. A. Lowenheim, Electroplating, 1978, New York.
[2] 王紀雯,”複合電鍍之簡介”,材料與社會,第32期 (1989) 37頁。
[3] 劉俊英,”複合電鍍與高性能引擎”,材料與社會,第27期 (1989) 第35頁。
[4] F. K. Sautter, “Electrodeposited of Dispersion-Hardened Nickel-Al2O3 Allys”, Journal of the Electrochemical Society,110, (1963) 557.
[5] 黃炳照,鄭世崧,”電化學在材料上的應用”,化工,第37卷第3期 (1990) 第18頁。
[6] E. C. Kedward, K. W. Wright and A. B. Tennet, “A Cobalt/Chromic Carbide Composite Coating For High Temperature Wear Resistance”, Transactions of the Institute of Metal Finishing, 54 (1974) 8.
[7] J. Zahavi and J. Hazan, “Electrodeposited Nickel Composites Containing Diamond Particles”, Plating & Surface Finishing, Feb., (1983) 57.
[8] M. Ghouse, “Wear Characteristics of Sediment Co-depositied Nickel-SiC Composite Coatings”, Metal Finishing, Mar., (1984) 33.
[9] M. Ghouse, M. Viswanathan and E. G. Ramachandran, “Friction and Wear Characteristics of Electrodeposited Nickel-Craphite and Nickel-MoS2 Composite”, Metal Finishing, Aug., (1980) 57.
[10] J. S. Hadley and L. E. Harland, “Electroless Nickel/PTFE Composite Coatings”, Mteal Finishing, Dec., (1987) 51.
[11] D. F. Susan, W. Z. Misiolek and A. R. Marder, “Reaction Synthesis of Ni-Al-Based Particle Composite Coatings”, Metallurgical and Materials Transactions A, 32, Feb, (2001) 379.
[12] R. S. Saifulin, Zh. Prikl. Khim. 39, Apr., (1966) 810.
[13] T. W. Tomaszewski, L. C. Tomaszewski and H. Brown, Plating, 56 (1969) 1234.
[14] V. P. Greco and W. Baldauf, Plating, 70, Feb., (1968) 57.
[15] E. C. Vest and D. F. Bazzarre, Metal Finishing, 65 (1967) 52.
[16] R. Narayan and B. H. Narayana, “Electrodeposited Chromium-Craphite Composite Coatings”, Journal of the Electrochemical Society, 128, (1981) 1704.
[17] E. S. Chen and F. K. Sautter, Plating & Surface Finishing, 63, Sep., (1976) 28.
[18] V. V. Grinina and Y. M. Pokukarov, “Effect of Periodic Current on the Incorporation of Foreign Particles in Electrolytic Copper Deposits”, Insititute of Physical Chemistry, Academy of Sciences of the USSR, Nov., (1985) Moscow, Russia.
[19] J. P. Ross, J. P. Celis and J. A. Helson, Transactions of the Institute of Metal Finishing, 55 (1977) 113.
[20] M. Visawanathan and M. Ghouse, Metal Finishing, 77, Oct., (1979) 67.
[21] J. Sadowska-Mazur, M. E. Warwick and R. Walker, Transactions of the Institute of Metal Finishing, 64, Nov., (1986) 142.
[22] I. Ahmad, V. P. Greco and J. M. Barranco, Composite Journal, 2, Jan., (1967) 18.
[23] E. C. Kedward and K. W. Wright, Plating, 65, Aug., (1978) 38.
[24] M. Thoma, Plating & Surface Finishing, 71, Sep., (1984) 33.
[25] K. Sato and K. Suzuki, Metal Finishing, 71, Dec., (1984) 21.
[26] M. Takaya, M. Matsunaga and T. Otaka, Plating & Surface Finishing, 74, Sep., (1987) 70.
[27] 田福助,”電化學理論與應用”,高立出版社,2000年第八版,台北。
[28] A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, 2001, New York.
[29] 李鴻年,”實用電鍍工藝”,國防工業出版社,1993年第二版,北京。
[30] A. J. Bard, “Encyclopedia of Electrochemistry of the Elements”, vIII, 1975, New York.
[31] 宋仰恆,”鍍鎳的理論與實務”,徐氏基金會,台北,1980。
[32] D. R. Brown and F. W. Salt, Journal of Applied Electrochemistry, (Jan. 1965) 40.
[33] R. V. Williams, Metal Finishing Journal, Oct., (1965) 399.
[34] P. W. Matin, Electroplating and Metal Finishing, (1966) 92.
[35] E. A. Brandes and D. Goldthrope, Metallutgia., Nov., (1967) 195.
[36] T. W. Tomazewski, L. C. Tomazewski and H. Brown, Plating (1969) 1234.
[37] D. W. Snaith and P. D. Groves, Transactions of the Institute of Metal Finishing, 50 (1972) 95.
[38] N. Guglielmi, “Kinetics of the deposition of inert particles from electrolytic baths”, Journal of the Electrochemical Society, 119, 8 (1972) 1009.
[39] K. Kurozaki, J. Jpn. Inst. Metals, (1979) 10.
[40] 增子昇,虫明克彥,” Electrodeposition of Ni-Al2O3 composites on rotating cylinder electrode”, 金屬表面技術,28, 10, (1977) 534.
[41] 增子昇,虫明克彥,” Deposition kinetics of alumina particle during electroplating of nickel-alumina composites”, 金屬表面技術,31, 10, (1980) 523.
[42] 增子昇,虫明克彥,” Deposition kinetics of alumina particle during electroplating of nickel-alumina composites”, 金屬表面技術,31, 10, (1980) 541.
[43] 增子昇,虫明克彥,”分散型複合電析”,Denki Kagaku, 53, 1, (1985) 45.
[44] J. P. Celis, J. R. Roos and C. Buelens, “A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix”, Journal of the Electrochemical Society, 134, (1987) 1402.
[45] J. Fransaer, J. P. Celis and J. R. Roos, “Analysis of the Electrolytic Codeposition of Non-Brownian Particles with Metals”, Journal of the Electrochemical Society, 139, (1992) 413.
[46] J. P. Celis, J. R. Roos and C. Buelens and J. Fransear, “Mechanism of electrolytic composite plating: survey and trends”, Transactions of the Institute of Metal Finishing, 69, 4, (1991) 133.
[47] J. Fransaer et al., “Perturbation of the flow of current to a disk electrode by an insulating sphere”, Journal of the Electrochemical Society, 142, 12, (1995) 4181.
[48] J. P. Celis and J. Fransear, “Composite coatings – new insight leading to improved process control”, Transactions of the Institute of Metal Finishing, 75, 3, (1997) 118.
[49] J. A. Yopps and D. W. Fuerstenau, “The zero point of charge of alpha-alumina, Journal of Colloid Science”, 19, (1964) 61.
[50] T. W. Healy and D. W. Fuerstenau, “The oxide-water interface-interrelation of the zero point of charge and the heat of immersion”, Journal of Colloid Science, 20, (1965) 376.
[51] J. P. Bonino, S. Loubiere and A. Rousset, “Reactivity and codeposition of Co3O4 Powders with nickel in a Watts bath”, Journal of Applied Electrochemistry, 28, (1998) 1227.
[52] R. J. Hunter, “Zeta Potential in Colloid Science: Principles and Applications”, 1981, New York.
[53] R. J. Stokes and D. F. Evans, “Fundamentals of Interfacial Engineering”, 1997, New York.
[54] 葉信宏,”談複合電鍍中粉末分散行為”,材料與社會,61期 (1992) 85頁。
[55] S. W. Banovic, K. Barmak and A. R. Marder, “Characterization of single and discretely-stepped electro-composite coatings of nickel-alumina”, Journal of Materials Science, 34, (1999) 3203.
[56] J. W. Dini, Electrodeposition, 1993, New Jersey.
[57] 周天佑,”數位影像處理技術於定量金相學上之應用”,國立成功大學機械工程研究所碩士論文,1988。
[58] F. N. Rhines, “Phase Diagrams in Metallurgy: Their Development and Applications”, 1980, New York.
[59] B. D. Cullity, “Elements of X-Ray Diffration”, 1959, New York.
[60] 黃炳照,”電鍍-電化學基礎(II)”,表面工業雜誌,第50期 (1995) 第36頁。
[61] J. Amblard, I. Epelboin, M. Froment and G. Maurin, “Inhibition and nickel electrocrystallization”, Journal of Applied Electrochemistry, 9, (1979) 233.
[62] I. Epelboin, P. Morel and H. Takenouti, Journal of the Electrochemical Society, 118, (1971) 1282.
[63] P. C. Hiemenz, “Principles of Colloid and Surface Chemistry”, 1986, New York.
[64] G. Maurin and A. Lavanant, “Electrodeposition of nickel/silicon carbide composite coatings on a rotating disc electrode”, Journal of Applied Electrochemistry, 25, (1995) 1113.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top