跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:畢建中
研究生(外文):Jian-Zhong Bi
論文名稱:以球形固體模板製備微米孔洞薄膜
論文名稱(外文):Preparing macroporous film with spherical solid template
指導教授:馬哲儒馬哲儒引用關係
指導教授(外文):Jer-Ru Maa
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:84
中文關鍵詞:溶凝膠法孔洞薄膜模板固體小球
外文關鍵詞:solid spheretemplateporous filmsol-gel
相關次數:
  • 被引用被引用:3
  • 點閱點閱:402
  • 評分評分:
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用溶凝膠能在常溫下合成的特性,將固體模板PS小球加入溶凝膠液中,之後再以溶劑氯仿溶出,來獲得所需的孔洞。並根據溶凝膠之性質,改變不同的酸鹼值與靜置時間(aging time),得到不同黏度的溶液,藉以製備出不同厚度的薄膜。從實驗得知,pH值與靜置天數的增加會使溶液黏度變大,進而膜厚也會增加,而欲獲得一良好且孔洞均勻分散的薄膜,pH值需控制在4以下,靜置天數需小於5天。而針對溶液黏度來看,黏度值需控制在6c.p.以下,所得之薄膜均勻性較佳。再將所得之膜厚實驗值與文獻中經驗方程式求得的理論值相比較,發現溶液中水為溶劑的主要成份,而乙醇所佔的含量較少。
此外,也針對薄膜厚度的改變是否會對孔洞深度造成影響進行探討,由實驗結果發現由於模板密度小於溶凝膠液密度,模板位置為浮在薄膜上面,因此膜厚的增加並不會使模板包埋的體積增加,而模板移除後孔洞深度也未隨膜厚增加而加深。接著,本研究嘗試利用多層覆蓋(multi-layer coating)的方式來增加模板的包埋深度。由AFM照片得知,當所鍍膜層增加時,孔洞深度及孔徑大小皆會隨之增大。但由於附著力的關係,鍍膜層數過多時,脫落情形嚴重,因此膜數需保持在兩層以下。
The research according to the characteristics of sol-gel of reaction at general temperature, put solid template in sol-gel solution and then removed with chloroform to get the porous. The research also changed pH value and aging time to get solution with different viscosity, and then prepared film with different thickness. From the results we know that the more pH value and aging time , the larger viscosity and film thickness. We also know that we can get a nice film under pH=4 and five days. If the viscosity of solution is under 6c.p., we can also get a nice film. Comparing with the experimental value of film thickness and the theoretical value of film thickness, we found that solvent contains much water and less alcohol.
The other part of the research is to know if the change of film thickness would effect the porous depth. From the results we found the position of template is on the film because of density, and the change of film thickness would not effect the porous depth. Then we increase the embedded volume of template with multi-layer coating. According to AFM pictures we know the porous depth is longer when the coating layer is increasing. But because of adhesion force, film will fall off as the layer film is too much.
中文摘要 I
英文摘要 II
誌謝 III
總目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XI
第一章 前言 1
第二章 文獻回顧 3
2.1 溶凝膠法簡介 3
2.1.1 溶凝膠法的基本原理 3
2.1.2 影響溶凝膠程序的主要變因 5
2.2 薄膜孔洞之形成 8
2.2.1 小孔洞薄膜(microporous) 8
2.2.2 中孔洞薄膜(mesoporous) 9
2.2.3 大孔洞薄膜(macroporous) 11
2.3 塗佈方法 12
2.3.1 浸漬塗佈法(dip coating) 13
2.3.2 噴霧塗佈法(spray coating) 13
2.3.3 電泳塗佈法(electrophoresis) 14
2.3.4 帶狀覆膜法(tape casting coating) 14
2.3.5 旋轉塗佈法(spin coating) 15
第三章 實驗 25
3.1 實驗儀器 25
3.2 儀器原理 26
3.2.1 表面粗糙度分析儀(��-stepper) 26
3.2.2 掃描式電子顯微鏡(SEM) 26
3.2.3 比表面積及孔徑分佈測定儀(BET) 27
3.2.4 雷射光散射法粒徑測定儀 28
3.2.5 原子力顯微鏡(AFM) 29
3.3 實驗藥品 30
3.4 實驗步驟 30
第四章 結果與討論 41
4.1 pH值與靜置時間對薄膜及膜厚之影響 41
4.2 膜厚實驗值與理論值之分析 43
4.3 膜厚與孔洞深度之間的關聯性 45
4.4 多層覆蓋(multi-layer coating)對孔洞深度之影響 46
第五章 結論與建議 66
5.1 結論 66
5.2 建議 67
參考文獻 68
附錄 71
自述 84
1.Brave, R. R., “Inorganic Membrane: Synthesis, Characteristics and Applications,” Van Nostrand Reinhold, 1991.
2.Hench, L. L., and J. K. West, Chemical Review, 90, 33, 1990.
3.Klein, L. C., “Sol-Gel Technology for Thin Films, Fibers, Performs, Electronics and Specialty Shapes,” Noyes Publications, 1987.
4.Brinker, J., and Scherer, G., “Sol-Gel Science,” Academic Press: New York, 1989.
5.黃君強,”溶凝膠法製備微孔型氧化鋯薄膜,” 國立台灣大學化學工程研究所碩士論文,1996。
6.吳炳佑,蔣孝澈,”溶凝膠法製備薄膜及其應用,” 材料科學,第28卷,第3期,169,1996。
7.王偉洪,”溶凝膠在製作光學鍍膜之應用,” 化工,第46卷,第5期,81,1999。
8.Bradley, D. C., R. C. Mehrota and D. P. Gaur, “Metal Alkoxides,” Academic Press. Inc., London, 1978.
9.Mehrotra, R. C., J. Non-Cryst. Solid, 100(1-3), 16, 1988.
10.曾家良,”應用溶膠凝膠技巧於折射率梯度鏡片,” 台灣工業技術學院化學工程技術系碩士學位論文,1991。
11.Colby, M. W., A. Osaka and J. D. Mackenzie, J. Non-Cryst. Solids, 82, 37, 1986.
12.Sakka, S., and K. Kamiya, J. Non-Cryst. Solids, 42, 403, 1980.
13.Kamiya, K., K. Tanimoto and T. Yoko, J. Mater. Sci. Lett., 5, 402, 1986.
14.Jones, R. W., “Fundamental principles of sol-gel technology,” The institute of Metal, London, 1989.
15.程麗純,”溶凝膠法製備Nano-pore氧化鋯薄膜,” 國立台灣大學化學工程研究所碩士論文,1999。
16.Brinker, C. J., T. L. Ward, R. Sehgal, N. K. Raman, S. L. Hietala, D. M. Smith, D. W. Hua, and T. J. Headley, “Ultramicroporous silica-based supported inorganic membranes,” J. Membrane Sci., 77, 165, 1993.
17.Santos, L. R. B., S. H. Pulcinelli, and C. V. Santilli, “Preparation of SnO2 supported membranes with ultrafine pores,” J. Membrane Sci., 127, 77, 1997.
18.Ryoo, R., C. H. Ko, S. J. Cho, and J. M. Kim, “Optically Transparent, Single-Crystal-Like Oriented Mesoporous Silica Films and Plates,” J. Phys. Chem. B, 101, 10610, 1997.
19.Miyata, H., and K. Kuroda, “Formation of a Continuous Mesoporous Silica Film with Fully Aligned Mesochannels on a Glass Substrate,” Chem. Mater., 12, 49, 2000.
20.Ogawa, M., and N. Masukawa, “Preparation of transparent thin films of lamellar ,hexagonal and cubic silica-surfactant mesostructured materials by rapid solvent evaporation methods,” Microporous and Mesoporous Materials, 38, 35, 2000.
21.Imhof, A., and D. J. Pine, “Ordered macroporous materials by emulsion templating,” Nature, 389, 948, 1997.
22.Bibette, J., “Depletion Interactions and Fractionated Crystallization for Polydisperse Emulsion Purification,” J. Colloid Interface Sci., 147(2), 474, 1991.
23.Okubo, T., T. Takahashi, M. Sadakata, and H. Nagamoto, “Crack-free porous YSZ membrane via controlled synthesis of zirconia sol,” J. Membrane Sci., 118, 151, 1996.
24.Khramov, A. N., and M. M. Collinson, “Sol-gel preparation of macroporous silica films by templating with polystyrene microspheres,” Chem. Commun., 8, 767, 2001.
25.Khramov, A. N., J. Munos, and M. M. Collinson, “Preparation and Characterization of Macroporous Silicate Films,” Langmuir, 17, 8112, 2001.
26.Simon, C., Key eng. mater., 61-62, 425, 1991.
27.Bronside, D. E., C. W. Macosko and L. E. Scriven, “On the Modeling of Spin Coating,” Journal of Imaging Technology, 13, 122, 1987.
28.Brian G. Higgins, “Film flow on a rotating disk,” Phys. Fluids, 29(11), 3522, 1986.
29.Emslie, A. G., F. T. Bonner and L. G. Peck, “Flow of a Viscous Liquid on a Rotating Disk,” J. Appl. Phys., 29(5), 858, 1958.
30.Meyerhofer, D. J., “Characteristics of Resist Films Produced by Spinning,” J. Appl. Phys., 49, 3393, 1978.
31.Jenekhe, S. A., and S. B. Schuldt, “Flow and Film Thickness of Bingham Plastic Liquids on a Rotating Disk,” Chem. Eng. Commun., 33, 135, 1985.
32.Birnie III, D. P., and M. Manley, “Combined flow and evaporation of fluid on a spinning disk,” Phys. Fluids, 9(4), 870, 1997.
33.Birnie III, D. P., “Combined flow and evaporation during spin coating of complex solutions,” J. Non-Cryst. Solids, 218, 174, 1997.
34.Rehg. T. J., and B. G. Higgins, “Spin coating of colloidal suspension,” AIChE J., 38, 1489, 1992.
35.Chen, B. T., “Investigation of the solvent-evaporation effect on spin coating of thin films,” Polym. Eng. Sci., 23(7), 399, 1983.
36.Sukanek, P. C., “Dependence of thin film thickness on speed in spin coating,” J. Electrochem. Soc., 138, 1772, 1991.
37.Robert, J. S., and D. F. Evans, “Fundamentals of Interfacial Engineering,” Wiley-VCH Inc., 1997.
38.王志方,”材料表面測定技術,” 復漢出版社,1999。
39.Gregg, S. J., K. S. W. Sing, “Adsorption, Surface Area and Porosity,” 2nd Ed., Academic press, New York, NY, 1982.
40.Davis, S. A., S. L. Burkett, N. H. Mendelson, and S. Mann, Nature, 385, 420, 1997.
41.Sakka, S., K. Kamiya, K. Makita, and Y. Yamamoto, J. Non-Cryst. Solids, 63, 223, 1984.
42.王志達,”旋轉塗佈之研究,” 國立台灣大學化學工程研究所博士論文,1995。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top