跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:汪富瑜
研究生(外文):Fu-Yu Wang
論文名稱:聚丙烯醚含聚乙烯亞胺擬樹枝狀高分子之合成與其在製備銅奈米粒子之應用
論文名稱(外文):Synthesis and Characterization of Dendritic-like Polypropylene Glycol Derivatives Contained Ethyleneimine Groups and Their Use as Protectors for Copper Nanoparticle Preparation
指導教授:郭炳林郭炳林引用關係
指導教授(外文):Ping-Lin Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:77
中文關鍵詞:擬樹枝狀高分子螢光界面張力銅奈米粒子螯合能力
外文關鍵詞:copper nanoparticlesdendritic-like polymerchelating abilitysurface tensionfluorescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:451
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

本研究以不同鏈段之聚丙烯醚二胺(polyoxypropylenediamine)為核心與2-chloroethylamine hydrochloride(CEA)進行反應,以製備在兩側末端含有不同ethyleneimine(EI)官能基團之擬樹枝狀高分子,並探討其在製備銅奈米粒子之應用。首先以核磁共振儀(1H與13C-NMR)、元素分析(EA)和胺基滴定法確認所合成的高分子,並藉由高分子在水溶液中的表面張力、螢光吸收強度(I1/I3)來推測其在水溶液中的行為,再以紫外線可見光光譜儀來探討其對銅離子(Cu2+)之螯合能力。並利用穿透式電子顯微鏡(TEM)評估所合成高分子之構造、EI數值、濃度和還原劑(NaBH4)用量對還原後銅奈米粒子之粒徑大小及分佈的影響。

實驗結果顯示,所合成高分子在水溶液中均是先擴散至空氣/水的界面,待濃度增加才在水溶液中形成聚集體。觀察其對水溶液表面張力下降之能力為:D4E4>D4E8>D2E4;在水溶液中易形成聚集體的程度為:D4E8>D4E4>D2E4;對Cu2+的螯合能力D4E8>D4E4≒D2E4。其應用在製備銅奈米粒子時,所得粒子粒徑大小分佈為D2E4>D4E4>D4E8,當高分子濃度比例增加時,可使銅奈米粒子的尺寸減小。
Abstract

In this study, ethyleneimine (EI) group was introduced into polypropylenediamine with different molecular weight by a simple in-situ reaction with 2-chloroethylamine hydrochloride. The EI number (N) of these dendritic-like polymers was determined by 1H-NMR, and the percentages of primary, secondary, and tertiary amines were estimated by potentiometric titration. Then, the measurements of surface tension and the ratio (I1/I3) of intensities of the fluorescence of pyrene for polymer solutions were used to interpret their behaviors in water. The chelating ability of these polymers towards copper ion (Cu2+) has been examined by UV/Vis spectroscopy. The copper nanoparticles protected by these dendritic-like polymers were characterized by TEM images, and the effects of concentration, EI number of polymer, and amounts of reducing agent (NaBH4) on the prepared copper nanoparticles were investigated.

From the experiment results of surface tension and I1/I3, it is clear that the polymer chains in the aqueous solution transfer to the air/water interface before forming polymer aggregates. The degree for these polymers to reduce the surface tension in aqueous solution is D4E4>D4E8>D2E4. The eases for these polymers to form aggregates in aqueous solution is D4E8>D4E4>D2E4. The chelating ability of polymers towards copper ion (Cu2+) is D4E8>D4E4≒D2E4. The trend of the average size of copper nanoparticle in the presence of these polymers is D4E8<D4E4<D2E4. Also, the increasing polymer concentration decreases the size of copper nanoparticles.
壹、中文摘要…………………………………………………………….. i
貳、英文摘要……………………………………………………………. ii
參、誌謝……………………………………………………………….… iv
肆、總目錄…………………………………………………………….… v
伍、流程目錄……………………………………………………………. vi
陸、圖目錄……………………………………………………………… vii

柒、主文

第一章 緒論………………………………………………………….. 1
第二章 原理………………………………………………………….. 3
第三章 合成與物性測試……………………………………………. 18
第四章 結果與討論…………………………………………………. 29
第五章 結論…………………………………………………………. 45

捌、參考文獻…………………………………………………………. 47
玖、自述………………………………………………………………. 77
1.Edelstein, A. S.; Cammarata, R. C. Nanomaterails: synthesis, properties and application; Chap.1, Ed. by A. S. Edelstein and R.C.Cammarata, IOP Publishing , 1996.
2.Chen, D. H.; Wu, S. H. Chem. Mater. 2000, 12, 1355.
3.Sun, S.; Murry, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989.
4.Suslick, K. S.; Fang, M.; Hyeon, T. J. Am. Chem. Soc. 1996, 118, 119600.
5.Chechik, V.; Crooks, R. M. J. Am. Chem. Soc. 2000, 122, 1243.
6.Bonnemann, H.; Brijoux, W. Metal cluster in Chemistry; vol. 2 Wiley-VCH, Weinheim, 1999.
7.Toshima, N.; Wang, Y. Langmuir 1994, 10, 4574.
8.Toshima, N.; Hirakawa, K. Appl. Surf. Sci. 1997, 121/122, 534.
9.Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz, P.; Brijoux, W.; Bonnemann, H. Langmuir 1997, 13, 2591.
10.Gotz, M.; Wendt, H. Electrochim. Acta 1998, 145, 3637.
11.Schmidt, T. J.; Noeske, M.; Gasteiger, H. A.; Behm, R. J.; Britz, P.; Brijoux, W.; Bonnemann, H. J. Electrochem. Soc. 1998, 145, 925.
12.Toshima, N.; Hirakawa, K. Polymer 1999, 31, 1127.
13.Toshima, N.; Yonezawa, T. New J. Chem. 1998, 1179.
14.Bonnemann, H.; Brijoux, W.; Brinkmann, R.; Dinjus, E.; Joussen, T.; Korall, B. Angew. Chem. Int. Ed. Engl. 1991, 30, 1344.
15.Reetz, M.T.; Helbig, W. J. Am. Chem. Soc. 1994, 30, 7401.
16.Schmid, G.; Peschel, S. New J. Chem. 1998, 22, 669.
17.Rodriguez, A.; Amiens, C.; Chaudret, B.; Casanove, M. J.; Lecante, P.; Bradley, J. S. Chem. Matter. 1996, 8, 1978.
18.Zhao, M.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120, 4877.
19.Balogh, L.; Tomalia, D. A. J. Am. Chem. Soc. 1998, 120, 7355.
20.Stoddart, F. J.; Welton, T. Polyhedron 1999, 18, 3575.
21.Chow, H. F.; Mong, Tony K. K.; Nongrum, M. F.; Wan, C. W. Tetrahedron 1998, 54, 8543.
22.Newkome G. R. Advances in Dendritic Macromolecules; JAI Press Inc., London, England, vol. 2, 1995.
23.Turro, N. J.; Geiger, M. W.; Hautala, R. R.; Schore, N. E. Fluorescent Probes for Micellar Systems. In Micellization, Solublization and Microemulsions; Plenum Press, New York, 75-86, 1977.
24.Mukerjee, P.; Mysels, K. J. Critical Micelle Concentrations of Aqueous Surfactant Systems; NSTOS-NBS 36, National Bureau of Standards, US Government Printing Office, Washington, D. C., 1971.
25.Turro, N. J.; Baretz, B. H.; Kuo, P. L. Macromolecules 1984, 17, 1321.
26.Ananthapadmanabhan, K. P.; Goddard, E. D.; Turro, N. J.; Kuo, P. L. Langmuir 1985, 1, 352.
27.Khuanga, U.; Selinger, B. K.; Mcdonald, R. Aust. J. Chem. 1976, 29, 1.
28.Kuo, P. L.; Okamoto M.; Turro, N. J. J. Phys. Chem. 1987, 91, 2934.
29.Turro, N. J. Modern Molecular Photochemistry 1978, 103.
30.Forster, T. Angew. Chem. 1969, 8, 333.
31.Birks, J. B. Photophysics of Aromatic Molecules; Wiley, Interscience, 1970.
32.Phillips, D. British Polymer Journal 1987, 19, 135.
33.Tachiya, M. J. Chem. Phys. 1980, 76, 340.
34.蘇品書撰,超微粒子材料技術,復漢出版社(1989).
35.莊萬發編撰,超微粒子理論應用,復漢出版社(1995).
36.Fendler, J. H.; Nanopraticles and nanostructured films: preparation, characterization and applications; Wiley-VCH, Weinhein, 1998.
37.Henglein, A. Chem. Rev. 1987, 87, 877.
38.Gaffet, E.; Tachikart, M.; Kedim, O.E.; Rahouadj, R. Mater. Charact. 1996, 36, 185.
39.Amulyacichus, A.; Daugvila, A.; Davidonis, E.; Sopavichus, C. Fiz. Met. Metalloved. 1998, 85, 111.
40.Reetz, M. T.; Helbig, W.; Quaiser, S. A. Chem. Mater. 1995, 7, 2227
41.Reetz, M. T.; Quaiser, S.A. Angew. Chem. Int. Ed. Engl. 1995, 34, 2240
42.Yonezawa, T.; Sato, T.; Kurada, S.; Kuge, K. J. Chem. Soc. Faraday Trans. 1991, 87, 1905.
43.Hsn, M.Y.; Quek, C. H. Langmuir 2000, 16, 362.
44.Okitsu, K.; Bandow, H.; Maeda, Y.; Nagata, Y. Chem. Mater. 1996, 8, 315.
45.Okitsu, K.; Mizukoshi, Y.; Bandow, H.; Maede, Y.; Yamamoto, T. A.; Nagata, Y. Ultrasonics Sonochemistry 1996, 3, 249.
46.Bradley, J. S.; Hill, E.W.; Klein, C.; Chaudret, B.; Duteil, A. J. Chem. Mater. 1993, 5, 254.
47.Pan, C.; Dassenoy, F.; Casanove, M. J.; Philippot, K.; Amiens, C.; Lrvsnyr, P.; Moddry, S.; Chaudret, B. J. Phys. Chem. B 1999, 103, 10098.
48.Zhao, M.; Crooks, R. M. Angew. Chem. Int. Ed. Engl. 1999, 38, 364.
49.Floriano, P. N.; Noble, C. O.; Schoonmaker, J. M.; Poliakoff, E. D.; McCarley, R. L. J. Am. Chem. Soc. 2001, 123, 10545.
50.Esumi, K.; Suzuki, A.; Yamahira, A.; Torigoe, K. Langmuir 2000, 16, 2604.
51.Zheng, J.; Stevenson, M. S.; Hikida, Van Patten, P. G J. Phys. Chem. B 2002, 106, 1252.
52.Wnag, Y.; Toshima, N. J. Phys. Chem. B 1997, 101, 5301.
53.Silvert, P. Y.; Vijayakrishnan, V.; Vibert, P.; Herrera-Urbina, R.; Elhsissen, K.T. Nanostructured materials 1996, 7, 611.
54.Nalwa, H.S. Handbook of Nanostructured materials and Nanotechnology; vol.1, chap. 1., Academic press, 2000.
55.Sangregorio, C.; Galeotti, M.; Barde, U.; Baglioni, P. Langmuir 1996, 12, 5800.
56.Bonnemann, H.; Richards, R.M. Eur. J. Inorg. Chem. 2001,2455.
57.Faraday, M. P. Trans. R. Soc. London 1957, 147, 145.
58.Turkevich, J.; Kim, G. Science 1970, 169, 873.
59.Turkevich, J.; Stevenson, P. C.; Hiller, J. Disc. Faraday Soc. 1951, 11, 55.
60.Schmid, G. Clusters and Colloids; VCH, Weinheim, 1994.
61.Balogh, L.; Valluzi, R.; Laverdure, K. S.; Gido, S. P.; Hagnauer, G. L.; Tomalia, D.A. J. Nanopart. Res. 1999, 1, 353.
62.Zhao, M.; Sun, L.; Crooks, R. M. Chem. Mater. 1999, 11, 3379.
63.Sigga, S.; Hanna, J.G. In Quantitative Organic Analysis via functional groups; 4th ed.; Robert E. Krieger Publishing company: Malabar, Florida, p.569-572, 1988.
64.Drabo, R. S. Physical Methods in Inorganic Chemistry; W. B. Sounders company; Philadephia Londan Toronto, p.95 1997.
65.Abhijit, M.; Toyoko, I.; Masayasu, I.; Naoko, H. Langmuir 2001, 17, 6000.
66.Liang, W. J.; Kuo, P. L. Macromol. Chem. Phys. 2001, 202, 1902.
67.Turro, N.J.; Kuo, P. L. J. Phys. Chem. 1986, 90, 288.
68.Pisolis, G.; Malliaris, A.; Paleos, C. M.; Tsiourvas, D. Langmuir 1997, 13, 5870.
69.Kobayashi, S.; Tokunoh, M.; Saegusa, T.; Mashio, F. Macromolecules 1985, 18, 2357.
70.Kobayashi, S.;Hiroishi, K.; Tokunoh, M.; Saegusa, T. Macromolecules 1987, 20, 1496.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top