跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝秉軒
研究生(外文):Biing-Shiuan Hsieh
論文名稱:TritonSP-190/SDS混合界劑之界面吸附行為的探討
論文名稱(外文):A study on the adsorption behavior of mixed Triton SP-190/SDS surfactants at the air/water interface
指導教授:馬哲儒馬哲儒引用關係
指導教授(外文):Jer-Ru Maa
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:71
中文關鍵詞:可分割型界面活性劑混合界面活性劑系統平衡表面張力動態表面張力
外文關鍵詞:dynamic surface tensionmixed surfactants systemequilibrium surface tensionsplittable surfactant
相關次數:
  • 被引用被引用:2
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討可分割型界面活性劑Triton SP-190及陰離子型界面活性劑sodium dodecylsulfate(SDS)所形成的混合界面活性劑系統在氣/液界面上的平衡及動態吸附行為。混合界面活性劑水溶液的平衡及動態表面張力,則分別利用威氏平板法及最大泡壓法進行測量。此外,並探討在含有可分割型界面活性劑的情況下,酸的添加對混合界面活性劑降低表面張力行為的影響。
平衡表面張力的量測結果顯示,混合系統降低表面張力的程度是由Triton SP-190所主導。此外,由混合系統平衡表面張力及CMC的測定結果,顯示在此混合系統中並沒有混合增效的作用存在。加入鹽酸改變界面活性劑溶液的酸鹼度至2後,並不會影響Triton SP-190單一成分水溶液的平衡表面張力值。對SDS水溶液而言,pH值下降卻會造成平衡表面張力值的降低。但在混合系統的水溶液中加入鹽酸降低pH值後,平衡表面張力的結果呈現上升的現象,且隨著混合系統中Triton SP-190重量比例的增加,其上升的現象愈明顯,這是因為Triton SP-190分子結構會被酸破壞所造成。
在動態表面張力方面,量測結果顯示SDS分子達到氣/液界面吸附平衡所需的時間較短。因此在混合系統中含有少量的SDS,即會對混合系統的動態表面張力行為造成明顯的影響,然而因為SDS降低表面張力的能力較弱,使得同一吸附時間的動態表面張力值明顯上升。在Triton SP-190/SDS混合溶液中,加入鹽酸降低pH值後,由於Triton SP-190分子的親疏水基鍵結會被酸所破壞,造成混合系統降低動態表面張力的作用明顯受到抑制。當混合界面活性劑濃度較低時,酸的影響並不明顯,但當界面活性劑濃度較高時,酸對混合系統動態表面張力行為抑制作用隨Triton SP-190重量比例的增加而愈明顯。
This study investigated the equilibrium and dynamic adsorption behavior at the air/liquid interface for the mixed surfactant system composed of a nonionic splittable surfactant, Triton SP-190, and an anionic surfactant, sodium dodecylsulfate (SDS). Equilibrium and dynamic surface tensions of the mixed surfactant solutions were measured by the Wilhelmy plate and maximum bubble pressure methods, respectively. Moreover, the influence of acids on surface tension lowering activity of the mixed surfactants containing a splittable surfactant was also investigated.
Equilibrium tension data indicate that the tension-lowering activity of the mixed surfactant system was determined by Triton SP-190. In addition, no synergistic effect was detected for the mixed surfactant system, as judged from equilibrium tension and critical micelle concentration data. When the pH value of aqueous Triton SP-190 solutions was decreased to 2 by the addition of acids, the equilibrium tension behavior was not affected. For aqueous SDS solutions, the equilibrium tension became lower when the pH value was lowered. However, the equilibrium tension of the mixed surfactant solutions became higher when the pH value was decreased due to the presence of acids, with an extent depending on the weight percentage of Triton SP-190. This result was attributable to the destruction of the Triton SP-190 molecular structure by acids.
From the dynamic tension data, it was found that SDS could reach equilibrium adsorption faster than Triton SP-190. Hence, even a small amount of SDS was present, dynamic tension behavior of the mixed Triton SP-190/SDS system was strongly affected. However, at a certain adsorption time, the corresponding dynamic tension was higher due to the lower tension- reducing activity of SDS. For mixed Triton SP-190/SDS solutions, the dynamic tension-lowering activity was inhibited significantly at lower pH, apparently resulting from the destruction of the Triton SP-190 molecular structure by acids. When the concentration of the mixed surfactants was low, insignificant influence of acids was found on the dynamic tension behavior. However, when the mixed surfactant concentration became higher, the inhibitory effect of acids on the dynamic tension behavior of the mixed surfactant solutions became significant with an extent depending on the weight percentage of Triton SP-190.
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧及相關理論 1
1-2-1 界面活性劑的性質 2
1-2-2 可分割型界面活性劑 3
1-2-3 界面活性劑的吸附理論 6
1-2-4 混合界面活性劑的吸附行為 10
1-2-5 界面活性劑的混合效應 11
1-3 研究動機與目的 14
第二章 實驗 23
2-1 藥品 23
2-2 儀器 23
2-2-1 威氏平板法表面張力測定儀 23
2-2-2 最大泡壓法表面張力測定儀 24
2-3 實驗步驟 24
2-3-1 平衡表面張力的測量 24
2-3-2 動態表面張力的測量 26
第三章 結果與討論 31
3-1 混合界面活性劑水溶液的平衡表面張力行為 31
3-1-1 濃度的影響 31
3-1-2 SDS比例的影響 32
3-1-3 酸的影響 32
3-2 混合界面活性劑水溶液的動態表面張力行為 34
3-2-1 濃度的影響 34
3-2-2 SDS比例的影響 35
3-2-3 酸的影響 36
第四章 結論 65
參考文獻 67
Abe, M. and Ogino, K., 1993, Mixed Surfactant Systems, Marcel Dekker, New York.

Castro, F. H. B., Borrego, A. G., and Hoces, M. C., 1998, “Surface Tension of Aqueous Solutions of Sodium Dodecyl Sulfate from 20℃ to 50℃ and pH between 4 to 12,” J. Chem. Eng. Data, 43, 717-718.

Chang C.-H., Wang N. H. L., and Franses E. I., 1992, “Adsorption Dynamics of Single and Binary Surfactants at the Air/Water Interface,” Colloids and Surfaces, 62, 321-332.

Chang, M. C., Huang, C. R., and Shu, H. Y., 2000, “Effects of Surfactants on Extraction of Phenanthrene in Spiked Sand,” Chemosphere, 41, 1295-1300.

Chen, C.-M. and Chang, C.-H., 2000, “Surfactant Concentration – Dependent Effects of pH on the Interfacial Properties of a Splittable Surfactant,” Ind. Eng. Chem. Res., 39, 3726-3731.

Chen, C.-M., Lu, C.-H., Chang, C.-H., Yang, Y.-M., and Maa, J.-R., 2000, “Influence of pH on the Stability of Oil-in-Water Emulsions Stabilized by a Splittable Surfactant,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 170, 173-179.

Chen, C.-M., Chang, C.-H., Yang, Y.-M., and Maa, J.-R., 2000, “Comparisons of the Effects of pH on the Interfacial Tension-Lowering Activity of Surfactants Triton X-100 and Triton SP-190,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 174, 357-365.

Day, H.-D., Yang, Y.-M., and Maa, J.-R., 1997, “Synergism in SDDS-DDTMAC Mixed Surfactant System,” J. Chin. Inst. Chem. Engrs., 28, 229-235.

Elworthy, P. H., and Mysels, K. J., 1966, “The Surface Tension of Sodium Dodecylsulfate Solutions and the Phase Separation Model of Micelle Formation,” J. Colloid Interface Sci., 21, 331-347.

Feitosa, E. and Brown, W., 1998, “Mixed Micelles of the Anionic Surfatant Sodium Dodecyl Sulfate and the Nonionic Pentaethylene Glycol Mono-n-dodecyl Ether in Solution,” Langmuir, 14, 4460-4465.

Gibbs, J. W., 1928, The Collected Works of J. W. Gibbs, Longmans, Green, London.

Goloub, T. P., Pugh, R. J., and Zhmud, B. V., 2000, “Micellar Interactions in Nonionic/Ionic Mixed Surfactant Systems,” J. Colloid Interface Sci., 229, 72-81.

Hernáinz, F. and Caro, A., 2002, “Variation of Surface Tension in Aqueous Solution of Sodium Dodecyl Sulfate in the Flotation Bath,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 196, 19-24.


Holland, P. M. and Rubingh, D. N., 1992, Mixed Surfactant Systems, ACS, Washington , D. C., USA.

Hua, X. Y. and Rosen, M. J., 1982, “Synergism in Binary Mixtures of Surfactants: I. Theoretical Analysis,” J. Colloid Interface Sci., 90, 212-219.

Jaeger, D. A., Martin, C. A., and Golich, T. G., 1984, “ “Destructible” Surfactants Based on a Ketal Group,” J. Org. Chem., 49, 4545-4547.

Jaeger, D. A., Wettstein, J., and Zafar, A., 1998, “Cleavable Quaternary Hydrazinium Surfactants,” Langmuir, 14, 1940-1941.

Jaeger, D. A., Reddy, V. B., and Bohle, D. S., 1999, “Cleavable Double-Chain Surfactant Co(III) Complexes,” Tetrahedron Letters, 40, 649-652.

Jañczuk B., Bruque J. M., Martin M. L. G., Calasanz C. D., 1995, “The Properties of Mixtures of Ionic and Nonionic Surfactants in Water at the Water/Air Interface,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 104, 157-163.

Kao Corp., 1983, “Surfactants-A Comprehensive Guide,” Authored by R&D Staffs.

Lee, D. H., Cody, R. D. and Kim, D. J., 2002, “Surfactant Recycling by Solvent Extraction in Surfactant-Aided Remediation,” Separation and Purification Technology, 27, 77-82.

Lin, S.-Y., Lin, Y.-Y., Chen, E.-M., Hsu, C.-T. and Kwan, C.-C., 1999, “A Study of the Equilibrium Surface Tension and the Critical Micelle Concentration of Mixed Surfactant Solutions,” Langmuir, 15, 4370-4376.

Motsavage, V. A., and Kostenbauder, H. B., 1963, “The Influence of the State of Aggregation on the Specific Acid-Catalyzed Hydrolysis of Sodium Dodecyl Sulfate,” J. Colloid Sci., 18, 603-615.

Muramatsu, M., and Inoue, M., 1976, “A Radiotracer Study on Slow Hydrolysis of Sodium Dodecylsulfate in Aqueous Solutions,” J. Colloid Interface Sci., 55, 80-84.

Ono, D., Masuyama, A., and Okahara, M., 1989, “Preparation of New Acetal Type Cleavable Surfactants from Epichlorohydrin,” J. Org. Chem., 55, 4461-4464.

Scamehorn, J. F., 1986, Phenomena in Mixed Surfactant Systems, ACS, Washington, D. C., USA.

Union Carbide Corporation, 1996, Triton SP-Series Surfactants, UC-1492.

Wang, G. W., Liu, Y. C., Yuan, X. Y., Lei, X. G., and Guo, Q. X., 1995, “Preparation, Properties, and Applications of Vesicle-Forming Cleavable Surfactants with a 1,3-Dioxane Ring,” J. Colloid Interface Sci., 173, 49-54.

李松柏,楊毓民,張鑑祥,馬哲儒,1997, “雙成分混合界面活性劑系統的分子交互作用和增效作用,” J. Chin. Colloid & Interface Soc., 20, 157-166.

林和玫和鍾利正,1995,“動態表面張力計的原理與應用,”化工資訊,9,42-49。

黃盈賓,1999,可分割型界面活性劑水溶液的界面特性之研究,成功大學化學工程系碩士論文。

楊進明,1996,界面活性劑混合物在氣/液界面吸附行為之研究,成功大學化學工程系碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top