跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佳良
研究生(外文):Chia-Liang Lin
論文名稱:矽氧烷改質聚胺基甲酸酯高分子電解質之製備與特性探討
論文名稱(外文):polysiloxane modify polyurethane polymer solid electrolytes
指導教授:郭炳林郭炳林引用關係
指導教授(外文):P.L. Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:125
中文關鍵詞:聚矽氧烷高分子電解質聚胺基甲酸酯
外文關鍵詞:polyurethaneSPEpolysiloxane
相關次數:
  • 被引用被引用:5
  • 點閱點閱:485
  • 評分評分:
  • 下載下載:151
  • 收藏至我的研究室書目清單書目收藏:0
  本研究以不同比例末端基為氫氧基團的聚矽氧烷(FM-4411)及polyethylene glycol (PEG) 與二苯甲基二異氰酸鹽(diphenylmethane diisocyanate, MDI)反應生成預聚物(prepolymer),再以乙二醇(ethylene glycol, EG)作為鏈延展劑(chain extender)合成polyurethane,再分別將其製成膠態及固態高分子電解質。
  在高分子鑑定方面,以FT-IR和液態核磁共振(Solution-NMR)來確定高分子之組成結構。另外藉由DSC與TGA等測試方法觀察其Tg和熱穩定性等高分子之基本物性,有助於分析高分子物性對導電度的影響。並利用交流阻抗分析法(AC-impedance)分析其在不同溫度下之導電度,並探討polysiloxane對其物性與導電度之影響。在高分子電解質之morphology方面,利用FTIR、DSC探討鋰鹽加入後其形態之變化,另外,藉由固態核磁共振儀(Solid-State NMR)探討鋰離子在高分子電解質內的傳導機構與高分子形態間的關聯性。
  膠態高分子電解質部份,由實驗結果可知,因吸入電解液而有塑化之效果,使Tg下降,增加離子傳導通道,提升其導電度。此系列膠態高分子電解質(含50 wt% LiClO4/PC)在室溫其導電度可達10-4 S/cm,在60℃其甚至可高達10-3 S/cm且在此時高分子薄膜為homogenous並具有不錯的機械性質,具有應用在鋰離子高分子電解質上之潛力。
  固態高分子電解質部份,由實驗結果可知隨著LiClO4濃度的增加,Tg會先上升至最高值而後下降,而當溫度上升時離子傳導行為會發生改變,由Arrehniius model轉變成VTF model。此外,隨著鋰鹽濃度的增加solid state NMR光譜以及7Li T1(自旋-晶格弛緩時間)都有明顯的變化,證明在高分子中摻入鋰鹽會造成高分子之形態發生改變,由 7Li MAS (with high power decoupling) NMR光譜的結果得知鋰離子在SPE內至少有兩種化學環境;由13C CP/MAS NMR光譜在加入鋰鹽後部分譜寬變寬且化學位移發生改變得知,鋰離子和polymer chain形成暫時性鍵結導致高分子鏈運動變慢或者是分佈變廣;由29Si CP/MAS、1H MAS NMR的結果得知,鋰離子不易與siloxane重複單位中的氧原子形成配位,但易與PEG軟鏈段上之ether oxygen形成配位。此研究結果可作為日後設計高分子電解質之依據並有助於深入探討鋰離子在高分子電解質內之傳導機構。
 Segmented polyurethanes were synthesized from poly(dimethylsiloxane) diol mixed with poly(ethylene glycol) (PEG) in different ratios as soft segment, 4,4’-diphenylmethane diisocyanate as hard segment, and ethylene glycol as chain extender. FT-IR, NMR, and thermal analysis were used to characterize the structure and morphology of these copolymers. These copolymers were then swollen in a LiClO4/PC liquid electrolyte solution to get gel-like polymer electrolytes. The Li+ ions are more effectively adsorbed in the microphase of PEG, however, the existence of polysiloxane significantly improve the property of solvent resistance. Then, impedance spectroscopy was used to investigate the conductivity of these polymers electrolytes as a function of the content of LiClO4/PC liquid electrolyte. The ionic conductivity of these systems reaches an order of 1.4×10-3 Scm-1 at 60℃ and 5.9×10-4 Scm-1 at 25℃, respectively, where the films with the increase of 50wt% immersed in 1M LiClO4/PC are homogenous and exhibit good mechanical properties.
 Solid polymer electrolytes based on PS55 have been characterized by differential scanning calorimetry (DSC), ionic conductivity, and multinuclear solid-state NMR measurements. The results of DSC measurements indicate the formation of transient cross-links between Li+ ions and the ether oxygens on complexation with LiClO4, resulting in an increase in the soft segment Tg. However, the soft segment Tg remains almost invariant at high salt concentration. There is a conductivity jump at around 310~330 K that the behavior of ionic conductivity changes from Arrehnius- to Vogel-Tammann-Fulcher (VTF)-type behavior. Below this jump temperature, the conductivity follows Arrehnius-like behavior, implying a diffusing mechanism for transport of the charge carriers where the charge carriers are decoupled from the segmental motion of the polymer chain. By contrast, the diffusion of charge carrier is assisted by the segmental motions of the polymer chains above the jump temperature, suggested by the VTF-like behavior. At high salt concentration, the ionic conductivity decreases due to the formation of ion-pairs and/or ion clusters. Solid-state 13C NMR results from cross-polarization time constant (TCH) measurements along with two-dimensional (2D) WISE NMR suggest that a significant decrease in the mobility of the soft segment as the salt is added. Polysiloxane backbone is not affected until at a higher salt concentration, as observed by the linewidth change in the 29Si NMR spectrum. The onset temperature of 7Li motional line-narrowing is correlated with the soft segment Tg. The activation energies obtained from ionic conductivity, 7Li linewidth and T1 measurements indicate that there is a strong correlation between the ionic conductivity of the solid polymer electrolyte and the mobile lithium cation.
總目錄
中文摘要…………………………………………………………………I
英文摘要………………………………………………..………………III誌謝……………………………………………………………………...V
目錄………………………………………………..…………...……….VI
表目錄…………………………………………………..……….……...IX
圖目錄……………………………………………..………………….....X

第一章 緒論……………………………………………………………..1
1-1 鋰電池的發展..…..……………………………………...….…..1
1-2 高分子電解質………………………………………………...3
1-2-1 高分子電解質的特性…………………………………...4
1-2-2 高分子電解質的種類…………………………………...5
1-2-3 水含量對高分子電解質之影響...………………………8
1-3 聚胺基甲酸酯……………………………………………9
1-3-1 聚胺基甲酸酯之特性………………………………...…9
1-3-2 異氰酸酯反應化學………………………………...…....9
1-3-3 聚胺基甲酸酯之結構………………………………….10
1-4 聚矽氧烷高分子………………………………………....11
1-4-1 聚矽氧烷之特性………………………………………11
1-4-2 聚矽氧烷高分子之結構……………………………….11

第二章 研究規劃………………………………………………………12
2-1 研究目的...………………………………………………….12
2-2 研究架構……………………………..……………………...12

第三章 實驗技術與原理………………………………………………15
3-1 實驗藥品...………………………………………………….15
3-2 儀器設備……………………………………………….……..15
3-3 高分子電解質薄膜之製備...…………………………………16
3-3-1 高分子電解質matrix之合成…………………………16
3-3-2 固態高分子電解質之製備………………………...…17
3-3-3 膠態高分子電解質之製備………………………..…17
3-4儀器分析原理……………………………………………….19
3-4-1 傅立葉紅外線吸收光譜儀(FTIR)….………………...19
3-4-2 微差掃瞄熱卡計(DSC)……………………………….19
3-4-3 熱重分析儀(TGA)……………………………………20
3-4-4 膠體滲透層析儀(GPC)……………………………….20
3-4-5 掃瞄式電子顯微鏡(SEM)……………………………20
3-4-6 液態核磁共振儀(Solution NMR)…………………….21
3-4-7 固態核磁共振儀(Solid State NMR)………………….22
3-4-8 交流阻抗分析儀(AC Impedance)……………………26
3-4-8-1 交流電迴路………………………………………26
3-4-8-2 等效電路…………………………………………28
3-5 分析儀器操作條件…………………………...………………30
3-5-1 傅立葉紅外線吸收光譜儀(FTIR)….………………...30
3-5-2 微差掃瞄熱卡計(DSC)……………………………….30
3-5-3 熱重分析儀(TGA)……………………………………30
3-5-4 膠體滲透層析儀(GPC)……………………………….30
3-5-5 掃瞄式電子顯微鏡(SEM)……………………………31
3-5-6 液態核磁共振儀(Solution NMR)…………………….31
3-5-7 固態核磁共振儀(Solid State NMR)………………….31
3-5-7-1 1H NMR…………………………………………...31
3-5-7-2 13C NMR………….……………………...……….31
3-5-7-3 2D 1H-13C WISE NMR…………………………...32
3-5-7-4 29Si NMR………………………………………….32
3-5-7-5 7Li NMR…………………………………………..32
3-5-8 交流阻抗分析儀(AC Impedance)……………………33

第四章 結果與討論.…...………………………………………………34
4-1 高分子電解質基材結構鑑定………………………….…….34
4-1-1傅立葉紅外線光譜分析………….…………………...34
4-1-2液態核磁共振光譜分析………….………...…………35
4-1-3 分子量之量測…………………………...……………36
4-1-4 熱性質分析……………………………...……………37
4-2 膠態電解質..……………………………………….………...38
4-2-1 DSC……………………………………………………38
4-2-2 吸收度分析…...………………………………………38
4-2-3 交流阻抗分析……………………………...…………39
4-3 固態電解質…………………….…………………..………...40
4-3-1 DSC……………………………………………………40
4-3-2 FTIR…………………………………………………...42
4-3-3 SEM……………………………………………………44
4-3-4 AC Impedance…………………………………………45
4-3-5 Solid State NMR………………………….……………49
4-3-5-1 29Si CP/MAS NMR…………………...….……….49
4-3-5-2 13C CP/MAS NMR………………………………..50
4-3-5-3 1H MAS NMR…………………………………….53
4-3-5-4 T1(H) Measurement ……………………………....54
4-3-5-5 2D 1H-13C WISE NMR …………………...………55
4-3-5-6 7Li NMR…………………………………………..55
4-3-5-7 7Li Linewidth Measurement………………………58
4-3-5-8 Li T1 Measurement………………………………..60

第五章 結論…………………………………………………………..119

第六章 參考文獻……………………………………………………..121


Table Caption

Table 1-1常用電解液之基本物性………………………………………7
Table 1-2 Bond energy, Bond length and Bond angle for siloxane……..11
Table 3-1 Sample之代號與組成……………………………………….18
Table 3-2 膠態電解質中鋰鹽含量之理論值………………………….18
Table 3-3 Impedance equations for Equivalent circuit Elements……….28
Table 4-1 Assignments of the absorption bands in FTIR spectra of
the undoped PS55 copolymer…………………………….…..63
Table 4-2 Assignments of 1H and 13C solution NMR chemical shifts
of PS55, where the structure of its repeat unit is shown
in Scheme 1…………………………………………………..64
Table 4-3 The molar content with respect to PEG, FM-4411 and MDI
for all these copolymers…………………………..….………65
Table 4-4 DSC results for lithium salt doped PS55.…...……………….66
Table 4-5 Decomposition results of the FTIR spectra in the -NH stretching region……………………………………………...67
Table 4-6 Activation energies obtained from conductivity measurements………………………………………………...68
Table 4-7 Observed solid-state 13C CP/MAS NMR chemical shifts
and peak assignments for undoped PS55……………….……69
Table 4-8 TCH and T1ρ(H) as determined from variable contact time
13C CP/MAS NMR experiments……………………………..70
Table 4-9 Activation energies obtained from 7Li linewidth and T1 measurements….……………………………………………..71


Scheme Caption
Scheme 1. The scheme for the preparation of Polyurethane/Polydimethylsiloxane segmented copolymers……………………………………………....…72
Scheme 2. Schematic representation of Polyurethane/Polydimethylsiloxane segmented copolymer……………………………………………….…73
Scheme 3. Scheme representation of coordination of Li+ ions in
different domains of polymer matrixes…………..………..74


Figure Caption
Figure 1-1 高分子電解質液體狀機構………………………………….4
Figure 1-2 加入塑化劑前後鋰離子在高分子電解質內的結構變化….8
Figure 1-3 Urethane反應機構…………………..……………………….9
Figure 1-4 Polyurethane結構示意圖…………………………………..10
Figure 2-1 研究架構…………………………………………………...14
Figure 3-1 I = 1/2之核種在磁場中之能態分裂……………………….21
Figure 3-2 I = 1/2之原子核在靜磁場中之進動情形及磁矩分佈…….24
Figure 3-3 Equivalent circuits and Nyquist plots……………………….29
Figure 4-1 The FTIR spectra for PEG1000, hydroxy terminated polysiloxane (FM-4411), and PS55 copolymer……....……75
Figure 4-2 1H solution NMR spectra of PS55 copolymer in DMSO-d6...76
Figure 4-3 13C solution NMR spectra of PS55 copolymer in DMSO-d6..77
Figure 4-4 1H solution NMR spectra of PEG 1000 in DMSO-d6……….78
Figure 4-5 1H solution NMR spectra of FM-4411 in CDCl3……………78
Figure 4-6 1H solution NMR spectra of SPU copolymer in DMSO-d6…79
Figure 4-7 1H solution NMR spectra of PS37 copolymer in DMSO-d6...79
Figure 4-8 1H solution NMR spectra of PS73 copolymer in DMSO-d6...80
Figure 4-9 1H solution NMR spectra of PPU copolymer in DMSO-d6…80
Figure 4-10 GPC Calibration plot for the method of standard
polystyrene additions……………………………………....81
Figure 4-11 GPC spectra for SPU copolymer……...……………..…….82
Figure 4-12 DSC thermograms for PPU, PS73, PS55, PS37, and SPU...83
Figure 4-13 TGA thermograms for PPU, PS73, PS55, PS37, and SPU...84
Figure 4-14 DSC thermograms for PS55 polymer matrixes with
the increase of 25 wt% and 50 wt% immersed
in 1M LiClO4/PC…………………………………………..85
Figure 4-15 The swelling percentage as function of immersion time
for PPU, PS73, PS55, and PS37 polymer matrixes in 1 M
LiClO4/PC………………………………….……….……..86
Figure 4-16 Nyquist plot of the (a) g-PS55 25% and (b) g-PS55 50% films attached on stainless cells at 25ºC; 300μm thick and 0.785 cm2 area for the films………………….……………87
Figure 4-17 Ionic conductivity of (a) g-PS55 and (b) g-PS73 polymer electrolyte as function of liquid electrolyte content and temperature………………………….……………………..88
Figure 4-18 Arrhenius plots of conductivity for g-PPU, g-PS73,
g-PS55, and g-PS37 polymer electrolytes with the
increase of 50 wt% immersed in 1M LiClO4/PC………….89
Figure 4-19 DSC results for LiClO4 doped PS55 samples……...………90
Figure 4-20 FTIR spectra of PS55 doped with various salt
concentrations: (a) 0.0, (b) 0.2, (c) 0.5, (d) 1.0, and
(e) 1.5 mmol LiClO4/g………………………………….….91
Figure 4-21 Deconvolution of N-H stretching regions for PS55 doped with various salt concentrations: (a) 0.0, (b) 0.2, (c) 0.5,
(d) 1.0, and (e) 1.5 mmol LiClO4/g PS55………………….92
Figure 4-22 SEM micrographs for (a) PS55 (b) PS55 2.0 (c) PS73 2.0 (×1500)…………………………………………………….93
Figure 4-23 SEM micrographs for PS55 2.0 (a) ×1500, (b) ×2000 and
(c) ×3000….….……………………………………………94
Figure 4-24 Nyquist plot of the PS55 0.2 at various temperature……....95
Figure 4-25 Nyquist plot for LiClO4 doped PS55 samples at 368K……95
Figure 4-26 Three-dimensional representation of the effect of LiClO4 concentration and temperature on ionic conductivity of
PS55 electrolytes……………………………...………...…96
Figure 4-27 Temperature dependence of ionic conductivity of PS55
doped with different amounts of LiClO4…………………..97
Figure 4-28 29Si CP/MAS spectra of PS55 doped with various
amounts of LiClO4………………………………...………98
Figure 4-29 13C CP/MAS spectra of (a) SPU and (b) PS55 copolymer...99
Figure 4-30 13C CP/MAS spectra of PS55 doped with (a) 0.0, (b) 0.2,
(c) 0.5, (d) 1.0, and (e) 1.5 mmol of LiClO4……………..100
Figure 4-31 13C signal intensities of the resonances at (a) 70.8 and (b) 40.0 ppm as a function of contact time ranging from 200
μs to 20 ms………………………………………………..101
Figure 4-32 1H one pulse NMR spectra of PS55 doped with (a) 0.0,
(b) 0.2, (c) 0.5, (d) 1.0, and (e) 1.5 mmol of LiClO4….….102
Figure 4-33 1H MAS NMR spectra for PS55 0.5, the line-shape
change as function of temperature…………………….…103
Figure 4-34 1H MAS NMR spectra for PS55 2.0, the line-shape
change as function of temperature………….…………….103
Figure 4-35 T1(H) measurements of PS55 doped with various salt concentrations as a function of temperature at (a) 0.0
ppm and (b) 3.5 ppm……………………………………..104
Figure 4-36 2D 1H-13C WISE spectra of PS55 doped with 0.0 mmol
of LiClO4…………………………………………….…...105
Figure 4-37 2D 1H-13C WISE spectra of PS55 doped with 1.0 mmol
of LiClO4…………………………….…………………...106
Figure 4-38 Projections of 1H dimension of the 2D 1H-13C WISE
spectra associated with the selected carbons (a) 70.8
ppm, (b) 15.0 ppm, and (c) 1.6 ppm for undoped PS55
(solid lines) and PS55 doped with 1.0 mmol of LiClO4 (dashed lines)……………………………………….……107
Figure 4-39 7Li NMR spectra of a PS55 0.5 sample, acquired at
223 K (a) with and (b) without high-power proton decoupling at 3000Hz; (c) with and (d) without
high-power proton decoupling at static, respectively…….108
Figure 4-40 7Li NMR spectra of a PS55 0.5 sample, acquired at
303 K (a) with and (b) without high-power proton decoupling at 3000Hz; (c) with and (d) without
high-power proton decoupling at static, respectively…….109
Figure 4-41 7Li NMR spectra of a PS55 1.5 sample, acquired at
223 K (a) with and (b) without high-power proton decoupling at 3000Hz; (c) with and (d) without
high-power proton decoupling at static, respectively…….110
Figure 4-42 7Li NMR spectra of a PS55 1.5 sample, acquired at
303 K (a) with and (b) without high-power proton decoupling at 3000Hz; (c) with and (d) without
high-power proton decoupling at static, respectively…….111
Figure 4-43 7Li MAS NMR (with high power proton decoupling)
spectra of PS55 doped with (a) 0.2, (b) 0.5, (c) 1.0,
and (d) 1.5 mmol of LiClO4 at 223 K, along with the deconvolution (dashed lines)………………………...…...112
Figure 4-44 Temperature dependence of the 7Li MAS NMR spectra
of PS55 doped with 0.2 mmol of LiClO4 at temperatures
as shown in plot…………………………………………..113
Figure 4-45 Temperature dependence of the 7Li MAS NMR spectra
of PS55 doped with 0.5 mmol of LiClO4 at temperatures
as shown in plot…………………………………………..114
Figure 4-46 Temperature dependence of the 7Li MAS NMR spectra
of PS55 doped with 1.5 mmol of LiClO4 at temperatures
as shown in plot…………………………………………..115
Figure 4-47 Temperature dependence of the 7Li MAS NMR spectra
of PS55 doped with 1.0 mmol of LiClO4 at temperatures
as shown in plot…………………………………………..116
Figure 4-48 Temperature dependence of the 7Li MAS NMR spectra
of PS55 doped with 2.5 mmol of LiClO4 at temperatures
as shown in plot…………………………………………..116
Figure 4-49 The linewidths of 7Li static NMR spectra of PS55 doped
with various salt concentrations as a function of temperature………………………………………………117
Figure 4-50 7Li T1 measurements of PS55 doped with various salt concentrations as a function of temperature……………..118
1.J. Hajek, French Patent, 1949, 8, 10.

2.費定國、高昀成“碳材料在鋰電池之發展與應用”工業材料121期,頁80(86.1)

3.林宗儀,國立成功大學化學工程研究所碩士論文,2000

4.姚慶意“高分子鋰電池”工業材料122期,頁117(86.2)

5.Wright, P. V.; Fenton, D. E.; Parke, J. M.; Polymer, 1973, 14, 589.

6.Armand, M.; Chabagno, J. M. and Duclot, M. Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, Extended Abstracts (Sept. 1978)

7.C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P.Rigaud, Solid State Ionics, 1983, 11, 91.

8.Shriver, D. F.; Ratner, M. A. Chem. Rev., 1988, 245, 4.

9.楊家諭、鄭程鴻、邱永城 “鋰離子二次電池電解質介紹” 工業材料110期,頁82(85.2)

10.M.G. Fiona, “Solid Polymer Electrolyte: fundamentals and technological applications”Chap.6, 1997, p95-123.

11.H.Cheradame, J. F. LeNest, A. Gandini and M. Leveque, J. Power Sources, 1985, 14, 27.

12.D.J. Bannister, G.R. Davies, I.M. Ward and J. E. McIntyre, Polymer, 1984, 25, 1291.

13.楊長榮、唐宏怡、張國恩“高分子鋰二次電池電解質材料介紹”工業材料133期,頁93(87.1)

14.Armstrong, R. D.; Clarke, M. D. Solid State Ionics, 1984, 11, 305.

15.C. Hepburn, “Polyurethane Elastomers”, Elsevier, 1992, p3-4.

16.Silverstein, R. M.; Webster, F. X. “Spectrometric Identification of Organic”, 1963.

17.Rabek, J. F. “Experimental Methods in Polymer Chemistry”, New York, 1980.

18.陳力俊 “電子顯微鏡學發展沿革與未來趨勢” 科儀新知,第十九卷第二期,頁105 (86.10)

19.賈緒威,科儀新知,第二十一卷第二期,頁18 (88.10)

20.E. R. Andrew, A. Bradbury and R. G. Eades, Nature, 1958, 182, 1659.

21.I. J. Loew, Phys. Rev. Lett., 1959, 2, 285.

22.E. Fukushiuma, S. B. W. Roeder, “Experimental Pulse NMR-A Nuts and Bolts Approach”, Addision-Wesley, 1981.

23.Abragam, A. “The principles of Nuclear Magnetism”, Clarendon, Oxford, 1961.

24.Slichter, C. P. “Principles of magnetic resonance”, 3nd Eds. Springer-Verlag, New York, 1989.

25.Bloembergen, N., Purcell, E. M. and Pound, R. V., Phys. Rev., 1948, 73, 679.

26.Simon T. C. Ng, Maria Forsyth, Douglas R. Macfarlane, Maria Garcia, Mark E. Smith and Johu H. Strange, polymer, 1998, 39, 6261.

27.J. G. Webster, “Electrical Impedance Tomography”, Adam Hilger, Bristol, 1990.

28.“Basics on AC Impedance Measurements”, Application Note AC-1. Available upon request from EG&G Princeton Applied Research, Electrochemical Instruments Division.

29.Schmidt-Rohr, K.; Clauss, J.; Spiess, H. W., Macromolecules, 1992, 25, 3272.

30.J. M. G. Cowie, In: MacCallum JR, Vincent CA, (Eds). “Polymer Electrolytes Reviews 1”, London: Elsevier, 1987, p285

31.D. W. Kim, Y. R. Kim, J. K. Park and S. I. Moon, Solids State Ionics, 1998, 106, 329.

32.T. C. Wen, S. S. Luo and C. H. Yang, Polymer, 2000, 41, 6755.

33.Seki, M.; Sato, K. Makromol. Chem., 1992, 193, 2971.

34.van Heumen, J. D.; Steven, J. R. Macromolecules, 1995, 28, 4268.

35.Ferry, A.; Jacobsson, P.; van Heumen, J. D.; Stevens, J. R. Polymer, 1996, 37, 737.

36.A.W. McLennaghan and R.A. Pethrick, Eur Polym J, 1988, 24, 1063.

37.A.W. McLennaghan, A. Hooper and R.A. Pethrick, Eur Polym J, 1989, 25, 1297.

38.M. Watanabe, S. Dohashi, K. Sanui, N. Ogata, T. Kobayashi and E. Ohtaki, Macromolecules, 1985, 18, 1945.

39.M. Watanabe, K. Sanui and N. Ogata, Macromolecules, 1986, 19, 815.

40.Wen, T. C.; Wu, M. S.; Yang, C. H. Macromolecules, 1999, 32, 2712.

41.S. Schantz, L. M. Torell and J. R. Stevens, J Chem Phys, 1991, 94, 6862.

42.C. L. Lin, H. M. Kao, R. R. Wu, and P. L. Kuo, Macromolecules, 2002, 35, 3083.

43.Coleman, M. M.; Lee, K. H.; Skrovanek, D. J.; Painter, P. C. Macromolecules, 1986, 19, 2149.

44.Coleman, M. M.; Skrovanek, D. J.; Hu, J.; Painter, P. C. Macromolecules, 1988, 21, 59.

45.Lee, H. S.; Wang, Y. K.; Hsu, S. L. Macromolecules, 1987, 20, 2089.

46.Luo, N.; Wang, D. N.; Ying, S. H. Macromolecules, 1997, 30, 4405.

47.Fish, D.; Khan, I. M.; Wu, E.; Smid, J. Br. Polym. J., 1988, 20, 281.

48.Nagaoka, K.; Naruse, H.; Shinohara, I.; Watanabe, M. J. Polym. Sci., Polym. Lett. Ed. 1984, 22, 659.

49.Ogumi, Z.; Uchimoto, Y.; Takehara, Z. Solid State Ionics, 1989, 35, 417.

50.Cohen, M. M.; Turnbull, D. J. Chem. Phys., 1959, 31, 1164.

51.T. G. Fox and P. J. Flory, J. Appl. Phys., 1950, 21, 581.

52.P. J. Flory and T. G. Fox, J. Amer. Chem. Soc., 1948, 70, 2384.

53.A. K. Doolittle, J. Appl. Phys., 1951, 22, 1471.

54.Hawker, C. J.; Chu, F.; Pomery, P. J.; Hill, D. J. T. Macromolecules, 1996, 29, 3831.

55.Beshah, K.; Mark, J. E.; Ackerman, J. L. Macromolecules, 1986, 19, 2194.

56.O’Gara, J. F.; Nazri, G.; MacArthur, K. M. Solid State Ionic, 1991, 47, 87.

57.Ibemisi, J. A.; Kimsinger, J. B. J. Polym. Sci., Polym. Chem. Ed., 1980, 18, 1123.

58.Bekturov, E. A.; Kudaibergenov, S. E.; Bakanova, Z. K.; Vshamov, V. Z. Kanapyanova, G. S. Polym. Commun. 1985, 26, 81.

59.Popov, A. I.; Smitana, A. J.; Kintzinger, J. –P.; Nguyen, T. T. T. Helv. Chim. Acta, 1980, 63, 668.

60.Fedarko, M. –C. J. Magn. Reson. 1973, 12, 30.

61.Mehring, M. “Principles of High Resolution NMR in Solids”, 2nd Eds. Springer-Verlag, New York, 1983.

62.Schmidt-Rohr, K.; Spiess, H. W. “Multidimensional Solid-State NMR and Polymers”, Academic Press, 1994.

63.Poole, Ch. “Electron Spin Resonance”, 2nd Ed., Wiley, New York, 1983.

64.Wintersgill, M. C.; Fontanella, J. J.; Calame, J. P.; Smith, M. K.; Jones, T. B.; Greenbaum, S. G.; Adamic, K. J.; Shetty, A. N.; Anden, C. G. Solid State Ionics, 1986, 18/19, 326.

65.Chung, S. H.; Jeffrey, K. R.; Steven, J. R. J. Chem. Phys., 1991, 94, 1803.

66.Peter P. Chu, Hsiu-Ping Jen, Fang-Rey Lo, and C. L. lang, Macromolecules, 1999, 32, 4738.

67.Williams, G. J. Non-Cryst. Solids, 1991, 131-133, 1.

68.Maring, D.; Meurer, B.; Weill, G. J. Polym. Sci., Part B: Polym. Phys., 1995, 33, 1235.

69.Kuchler, W.; Heitjans, P.; Payer, A.; Schollhorn, R. Solid State Ionics, 1994, 70, 434
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top