跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 16:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊元
研究生(外文):Chun-Yuan Cheng
論文名稱:含萘液晶之合成及性質研究
論文名稱(外文):Synthesis and Characterization for Liquid Crystalline Polymers containing 2,6-Naphthalene group
指導教授:蔡三元
指導教授(外文):Sun-Yuan Tsay
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:134
中文關鍵詞:4-羥基苯甲酸對苯二甲酸6-�@二酸液晶高分子半柔曲性6-羥基-2-�@甲酸乙二醇熔融聚合法4丁二醇
外文關鍵詞:LCPssemi-flexiblemelt polycondensation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:584
  • 評分評分:
  • 下載下載:107
  • 收藏至我的研究室書目清單書目收藏:2
液晶高分子具有高耐熱性、高強度、低的熱膨脹係數及加工性佳等優良的物性,為近年來工業界及學術界積極開發的一種新型高分子材料。廣泛應用於電子零件及精密機械零組件等。
  大部分的文獻中均是以隨機共聚合的方式來合成熱向性液晶高分子,比如:POB-PET及POB-PON。本研究以Vectra液晶為起點,參考Vectra液晶之合成技術及工業上PET製程,在其主鏈結構中導入軟鏈段,分兩階段(酯化段與聚合段)來合成有序半柔曲性之含�@聚酯液晶聚合物。所得的產物藉由IR、NMR、EA、XRD、TGA、DSC及DMA探討其組成及熱性質,以SEM、POM了解其表面形態並觀察液晶相之變化。
  實驗結果顯示:合成的液晶聚合物本性黏度在0.35~0.54(dl/g)之間,熱裂解溫度均達400℃以上,並具有耐溶劑性、低吸溼率等優點。以SEM觀察,可見到緻密的微纖結構,由此可看出其自我補強的特性。在POM的觀察中,可見到聚合物均呈現向列型(nematic)液晶相,並有寬廣的液晶相溫度範圍(△Tmeso)。
Thermotropic liquid crystalline polymers (TLCPs) are currently receiving remarkable attention for their excellent mechanical properties , thermal stabilities and chemical resistances and widely used in electronic parts and precision machinery parts. In recent years , it has been a new material of considerable interest scientifically and commercially.

Most synthesized TLCPs were close to random copolymers such as in the case of copoly(oxybenzoate-p-ethylene terephthalate) (POB-PET) and copoly(oxybenzoate-p-oxynaphthalate) (POB-PON). In this research , we refer to the technology of Vectra’s polymerization and the industrial processes of PET. Added the soft segment into the main chain of Vectra to form the sequent semi-flexible naphthalene based TLCPs by two steps processes (esterification and acidolysis melt polycondensation). The TLCPs products are characterized by FT-IR and 1H-NMR to analyze polymer structure and composition. The thermal properties such as Tg , Tm and Td are analyzed with TGA , DSC and DMA. The crystalline , morphology and mesophase are observed by XRD , SEM and POM.

The analytic results of the research demonstrate that : all the polymers had inherent viscosities of 0.35~0.54(dl/g) and good anti-solvent properties. The initial decomposition temperature (at 5 wt% loss) are above 400 oC and all have low hygroscopicity. The melting point are about 180~270 oC ; glass transition temperature are in the range of 87~112 oC depending on the number of polymethylene units. To observe the morphology of the polymer : shown strong orientation on the surface in the flow direction and many micro-fibers structure in a sectional drawing , that so called self-reinforcing. The optical textures of the polymers revealed a strong birefringence in the melts and imply that they form nematic mesophase. All the polymers have broad mesophase temperature range (△Tmeso).
總目錄

中文摘要…………………………………………………………….………Ⅰ
英文摘要………………………………………………………………….…Ⅱ
誌謝……………………………………………………………………….…Ⅲ
總目錄…………………………………………………………………….…Ⅳ
表目錄…………………………………………………………………….…Ⅵ
圖目錄………………………………………………………………..……...Ⅶ

主文
第一章 緒論…………………………………………………………….……1
1-1 前言……………………………………………………………….….1
1-2 液晶簡史…..………..…………………………………………….….3
1-3 液晶高分子之特性………………………………………………..…6
1-4 液晶高分子的應用…………………………………………………13
1-5 研究動機……………………………………………………………19

第二章 原理與文獻回顧……………………………………………...……20
2-1 液晶高分子的類型………………………………………………....20
2-2 液晶高分子的形成方式……..……………………………………..25
2-3 熱向性液晶之合成方法..…………………………………………..29
2-4 熱向性LCP之分子結構及分類…………………………………...32
2-5 熱向性LCP的發展………………………………………………...39
2-6 熱向性LCP的改質………………………………………………...43

第三章 實驗部分………………………………………………...………....53
3-1 藥品…………………………………………………………...…….53
3-2 實驗設備及儀器……………………………………………...…….54
3-3 合成步驟……………………………………………………...…….56
3-4 儀器分析方法………………………………………………...…….60

第四章 結果與討論…………………………………………………...……70
4-1 製程之探討……………………………………………………...….70
4-2 酯化物的結構分析……….………………………………...………75
4-3 液晶聚合物之成份分析與性質測試………….………………...…81
4-4 液晶性質之鑑定...……………………………………………….....93

第五章 結論………………………………………………………….……130

第六章 參考文獻……………………………………………………….....131

自述…………………………………………………………………...……134

表目錄

Table 1-1 已上市之LCP商品及上市年份(10)………………………….……5
Table 1-2 LCP與其他塑膠在氣相焊接之尺寸安定性(12)………………..11
Table 1-3 LCP、PPS、PET可析出離子程度比較表(12).……….…………11
Table 1-4 熱向性LCP與其他工程塑膠特性比較(13)…………...…………12
Table 1-5 LCP摻合高分子材料的種類(14)………………………………..18
Table 2-1 1,4聚苯的相變化溫度(36)………………………………………35
Table 2-2 p-HBA的相變化溫度(37)….………..…………………………..35
Table 2-3 LCP產品的分類(39)………………………………….………….37
Table 2-4 常用聚酯和共聚酯的單體………………………………………42
Table 2-5 半芳香族熱向性主鏈型液晶高分子的液晶原基團通用結構…45
Table 2-6 HBA/HNA共聚物的熔融溫度(65)…..………………………….48
Table 2-7 不同芳香族二醇對液晶行為的影響(55)……………………...….50
Table 4-1 酯化物之元素分析結果..………………………………………..96
Table 4-2 液晶聚合物之元素分析結果……………………………………96
Table 4-3 液晶聚合物之熱分析表…………………………………………96
Table 4-4 聚合物之液晶性質表……………………………………………97
Table 4-5 溶解度測試表……………………………………………………97
Table 4-6半柔曲性含三個苯環液晶原的熱向性液晶性質表…………….95

圖目錄

Fig.1-1 物質的液晶態與固態和液態的示意圖……...……………………..1
Fig.1-2 膽固醇苯甲酸酯(1)…….…………………...…………..……………3
Fig.1-3 塑膠分類表(11)……………………………..………………………...7
Fig.1-4 各類型高性能熱塑性塑膠(high-performance thermoplastics)力學性
質比較圖…………………………………………………………….8
Fig.2-1 層列A相液晶結構………………………………………...………21
Fig.2-2 層列B相液晶結構………………..……………………………….21
Fig.2-3 層列C相液晶結構…………………………………………………22
Fig.2-4 層列E相液晶結構…………………………………………………22
Fig.2-5 旋光層列C相液晶結構……………………………………………23
Fig.2-6 向列型液晶高分子結構…………………………………………...24
Fig.2-7 膽固醇型液晶結構……..………………………………………….24
Fig.2-8 液晶高分子的分類(19)……………………………………..……….27
Fig.2-9 側鏈型液晶聚合物示意圖(20)..…………………………………….28
Fig.2-10 側鏈型液晶高分子之分子結構與液晶行為關係圖(20)………….28
Fig.2-11 液晶高分子之形成分類(38)…...…………….…………………….37
Fig.2-12 第一代的液晶共聚酯…………………………………………….40
Fig.2-13 第二代的液晶聚酯……………………………………………….40
Fig.2-14 第三代的熱塑性液晶聚酯………...……………………………..41
Fig.2-15 三種常用的高分子改質方式(54)………………………………….43
Fig.3-1 酯化反應裝置圖…………………………….……………………..63
Fig.3-2 預聚合反應裝置圖………………………………...………………75
Fig.3-3 聚縮合反應裝置圖………………………………………………...76
Fig.4-1 第二階段酯反應在反應溫度180℃下,轉化率與時間的關係圖.98
Fig.4-2 第二階段酯反應在反應溫度210℃下,轉化率與時間的關係圖.98
Fig.4-3 未純化前HNA之1H-NMR圖譜….…..…………………………..99
Fig.4-4 純化後HNA之1H-NMR圖譜……………………………………100
Fig.4-5 TPA之紅外線光譜分析圖….…………………………………...101
Fig.4-6 NDA之紅外線光譜分析圖……………………………………..101
Fig.4-7 HBA之紅外線光譜分析圖……………………………………..102
Fig.4-8 ABA之紅外線光譜分析圖……………………………………..102
Fig.4-9 HNA之紅外線光譜分析圖……………………………………..103
Fig.4-10 ANA之紅外線光譜分析圖……………………………………...103
Fig.4-11 ABA之1H-NMR圖譜……………………..………………….…104
Fig.4-12 ANA之1H-NMR圖譜…………………………………………...105
Fig.4-13 ABA-EG之紅外線光譜分析圖………………………………….106
Fig.4-14 ANA-EG之紅外線光譜分析圖………………………………….106
Fig.4-15 ABA-BDO之紅外線光譜分析圖………………………………..107
Fig.4-16 ANA-BDO之紅外線光譜分析圖……………………………….107
Fig.4-17 ABA-EG之1H-NMR圖譜……………………………….……....108
Fig.4-18 ANA-EG之1H-NMR圖譜…………………………………….....109
Fig.4-19 ABA-BDO之1H-NMR圖譜………………………………….…110
Fig.4-20 ANA-BDO之1H-NMR圖譜…………………………………….111
Fig.4-21 ANA-EG-TPA之1H-NMR圖譜…………………………………112
Fig.4-22 ABA-EG-NDA之1H-NMR圖譜………………………………...112
Fig.4-23 ANA-EG-TPA之TGA圖……………………………..…………113
Fig.4-24 ANA-BDO-TPA之TGA圖……………………………………....113
Fig.4-25 ABA-EG-NDA之TGA圖………………………………………..114
Fig.4-26 ABA-BDO-NDA之TGA圖……………….…………………….114
Fig.4-27各試樣在氮氣環境下之TGA綜合比較圖…….………………..115
Fig.4-28 ABA-BDO-NDA之DSC升溫曲線圖………………………...…116
Fig.4-29 ANA-BDO-TPA之DSC升溫曲線圖…………………………...116
Fig.4-30 ANA-EG-TPA之DSC升溫曲線圖…….……………………….117
Fig.4-31 ABA-EG-NDA之DSC升溫曲線圖…………………………….117
Fig.4-32 ANA-BDO-TPA之DMA圖……………………………………..118
Fig.4-33 ABA-BDO-NDA之DMA圖…………………………………….118
Fig.4-34 ABA-EG-NDA之DMA圖………………………………………119
Fig.4-35 ANA-EG-TPA之DMA圖……………………………………….119
Fig.4-36 X-ray圖譜中結晶度之計算……………………………………….88
Fig.4-37 液晶高分子聚合物之XRD圖…………………………………..120
Fig.4-38 ABA-BDO-NDA之SEM照片 (倍率 500)…………………….120
Fig.4-39 ABA-BDO-NDA之SEM照片 (倍率 1000)..………………….121
Fig.4-40 ANA-BDO-TPA之SEM照片 (倍率 1000)…………………….121
Fig.4-41 ANA-EG-TPA之SEM照片 (倍率 1500)..…………………….122
Fig.4-42 ABA-EG-NDA之SEM照片 (倍率 3000).…………………….122
Fig.4-43 ANA-BDO-TPA之SEM照片 (倍率 200).…………………….123
Fig.4-44 ABA-BDO-NDA之SEM照片 (倍率 600)…………………….123
Fig.4-45 ANA-EG-TPA之SEM照片 (倍率 1000)..…………………….124
Fig.4-46 ABA-EG-NDA之SEM照片 (倍率 1000).…………………….124
Fig.4-47 ANA-EG-TPA之SEM照片 (倍率 2000)..…………………….125
Fig.4-48 ANA-EG-TPA之SEM照片 (倍率 3460)..…………………….125
Fig.4-49 ABA-BDO-NDA在285℃之photomicrograph (倍率 600)…….126
Fig.4-50 ANA-BDO-TPA在300℃之photomicrograph (倍率 240)……...126
Fig.4-51 ABA-EG-NDA在320℃之photomicrograph (倍率 240)……….127
Fig.4-52 ABA-BDO-NDA在350℃之photomicrograph (倍率 600)…….127
Fig.4-53 ABA-BDO-NDA在350℃之photomicrograph (倍率 960)…….128
Fig.4-54 ABA-BDO-NDA從350℃冷卻之photomicrograph (倍率 960).128
Fig.4-55 ANA-EG-TPA在330℃之photomicrograph (倍率 600)……….129
Fig.4-56 ANA-EG-TPA在290℃之photomicrograph (倍率 960)……….129
參考文獻
1. F. Reinitzer , Monatsh , 9, 421 (1888)
2. O. Lehmann, Verhandl, d. Deutschen, Phys. Ges., Sitzung, V. 16., 3,1 (1900)
3. 王德昌, 液晶高分子LCP, 高分子工業 no.55 P.41~46 (1994)
4. Kwolek, S. L. Du Pont, U. S. Patent 3600350 (1971)
5. Kwolek, S. L. Du Pont, U. S. Patent 3671542 (1972)
6. Jackson, W. J. and Kuhfuss, H.F., J. Poly. Chem. Ed., 14,2043 (1976)
7. Modern Plast., 61, 14 (Dec. 1984)
8. Plast. Technol., 30,82 (Dec, 1984)
9. Modern Plasr., 63, 18 (1986)
10. 徐貴鳳,熱向性聚酯液晶合成研究,國立成功大學化學工程研究所論文 (1999)
11. 蕭耀貴,工程塑膠應用與發展, 塑膠資訊 No.49 (2000.12)
12. N. A. Chilton, M. T. Goosey, eds., “Special Polymer for Electronics & Optoelectronics”, Chapman & Hall, New York (1995)
13. 蔡宏斌,熱向性LCP展望, 化工資訊P.70~77 (1992)
14. 洪世淇,液晶高分子材料的應用技術發展趨,工業材料no.133,P.157~162 (1998)
15. E.G. Joseph, G.L. Wilkes and D.G. Baird, in “Polymeric Liquid Crystals”, Plenum Press (1985)
16. M. Ameno and K. Nakagawa, Polymer, 28.263 (1987)
17. A. Nakai, T. Shiwaku,H.Hasegawa and T. Hashimoto, Macromo-lewles. 19,2010(1986)
18. Shibaev, V. P. and N. A. Plare, Adv. Polym. Sci., 60/61, 173 (1984)
19. 劉瑞祥譯,”液晶之基礎與應用”,國立編譯館出版 (1996)
20. Finkmann, H., H. Ringsdrof, and H. Win-drof Makromol. Chem., 179, 273 (1978)
21. W. J. Ward, R. W. Lenz, and S. W. Kantor, Ploymer, 36, 2819 (1995)
22. W. M. Eareckson, Intergacial polycondensation. X. Polyphenyl esters, Journal polymer.Science, Vol.40, P.399 (1959)
23. P. W. Morgon, “Condensation Polymer : Interfacial and Solution Method”, Interscience, New York, (1965)
24. T. V. Kudium, Polym. Sci. U. S. S. R., 21, 1540 (1979)
25. U. S. Pat., 3, 778, 410 (1973)
26. T. V. Kudeum, Polym. Sci. U. S. S. R., 20, 2023 (1978)
27. U. S. Pat., 3, 933, 713 (1973)
28. N. Yamazaki, F. Higashi, and Kawabata, J. Polym. Sci., Polym. Chem., 12, 2419 (1974)
29. F. Higashi, A. Hoshio and Y. Yamada, J.Polym. Sci.,Polym. Chem.,21, 3214 (1983)
30. F. Higashi, A. Hoshio and H. Ohtani, J. Polym. Sci., Polym. Chem., 22, 3983 (1984)
31. F. Higashi, M. Ozawa, A. Hoshio and A. Mochizuki, J. Polym. Sci., Polym. Chem., 23, 1699 (1985)
32. L. Onsager, Ann. N. Y. Acad. Soc., 51. 627. (1949)
33. P. J. Flory, Proc. Roy. Soc., A234, 73. (1956)
34. J. D. Parsons, Phys. Rev. A, 19, 1225. (1979)
35. H. Lekkerkeker, P. Coulon, R. Van der Haegen and R. Deblieck, J. Chem. Phys., 80. 3427 (1984)
36. P. A. Irvine and P. J. Flory, J. Chem. Soc., Faraday Trsns., 80, 1821 (1984)
37. M. Ballauff and P. J. Flory, Ber Bundsenges. Phys. Chem., 88, 530 (1984)
38. 洪正中,”液晶聚合物的物性與加工”,高分子工業,第14期,P.45~52 (1989)
39. 洪世淇,”液晶高分子的應用現況及未來展望”,化工資訊 Vol. 10, No. 6 P.15~21 (1996)
40. W. Volksen, etal., J.Polym. Sci. Polym. Chem. Ed., 21, 2249 (1983)
41. J. Blackwell, H. M. Cheug and A. Biswas, Macromolecules, 21, 39 (1988)
42. S. L. Kwolek, U. S. Pat. 3, 671, 542 (1972)
43. S. L. Kwolek, U. S. Pat. 3, 819, 587 (1974)
44. S. L. Kwolek, P.w. Morgan, J. R. Schaefgen, and L. W. Gulrich, Macromolecules, Vol.10. no.6 1390 (1977)
45. W. J. Jackson, Jr. Mol. Cryst. Liq. Cryst., 169, 23 (1989)
46. H. F. Kuhfuss, and W. J. Jackson, U. S. Pat. 3, 778, 410 (1973)
47. H. F. Kuhfuss, and W. J. Jackson, U. S. Pat. 3, 804, 805 (1974)
48. T. C. Pletcher, J.J.Kleinschuster, U. S. Pat., 3, 991, 014 (1976)
49. J. R. Schaefgen, U. S. Pat., 4, 075, 262 ;4, 118, 372 (1978)
50. G. W. Calundann, U. S. Pat., 4, 130, 548 (1978)
51. G. W. Calundann, U. S. Pat., 4, 161, 470 (1979)
52. A. J. East and G. W. Calundann, U. S. Pat., 4, 313, 841~2 (1982)
53. P. J. Flory and G. Ronca, Mol. Cryst. Liq. Cryst., 54, 289 (1979)
54. B. P. Griffin and M. K. Cox, Bri. Polym. J., 12, 147 (1980)
55. S. Antoun, R. W. Lenz, and J. I. Jin, J. Polym. Sci. Polym. Chem. Ed.,Vol.19, No.8, P.1901~1920 (1981)
56. J. I. Jin, S. Antoun, C. Ober, and R. W. Lenz, Brit. Polym. J., Vol.12, No.4 P.132~146 (1980)
57. Fuoquan Chen and R. W. Lenz, J.Polym. Sci. Polym.Chem. Ed.,Vol.22, No.11, P.3189~3201 (1984)
58. R. W. Lenz and J. I. Jin, Macromolecules, Vol.14, No.5, P.1405~1411 (1981)
59. R. W. Lenz, Macromol. Chem. Rapid Commun., 4, 49 (1983)
60. C. Ober, J. I. Jin, and R. W. Lenz, Polym. J., 14, 9 (1982)
61. G.Chen and R. W. Lenz., J. Polym. Sci., Polym. Phys. Ed., 22, P.3189 (1984)
62. R. W. Lenz, Polym. J., 17, P.105 (1985)
63. W. R. Krigbaum, H. Hakemi, and R. Kotek, Macro molecules, 18, P.965 (1985)
64. A. M. Donald and A. H. Windle, Liquid Crystalline Polymers, Cambridge Universdty press, 64 (1992)
65. G. W. Calundann, U. S. Pat. 4, 161, 470 (1979)
66. W. J. Jackson, Bri, Polym. J., 12(3), 154 (1980)
67. S. Inai, H. Suzuki, K. Asai snd K. Ueno, U. S. Pat. 4, 311, 823 (1982)
68. G. W. Caoundann in Proceeding of The Robert A Welch Foundatoin Conferences on Chemical Research XXVI Synthetic Polymers, 247 (1982)
69. Seymour, R. B. snd Carraher, C. E. “Polymer Chemistry, an introduction” P.204~207、228、230~232 (1981)
70. Allen, S. G. and G. C. Eastomond, Comprehensive Polymer Science, Wheaton press, Great Britain, P.275~315 (1989)
71. Ravindranath, K. and Mashelkar, R. A. “Polyethylene terephthalate I. Chemistry, Thermodynamics and Transport Properties” Chem. Eng. Sci, 41, 2197~2214 (1986)
72. Mitsuru Ueda,Yuichi Noguchi etc., Macromolecules, Vol.25, No.26 7086~7089 (1992)
73. P.L.Magagnini, M.Paci,F.P. etc., J.Appl.Poly.Sci., Vol.55, No.3, 461~480 (1995)
74. Seymour, Carraher, Polymer Chemistry, Marcel Dekker, New York, P.358~363 (2000)
75. 王棕櫚、謝達華、何國賢編著,檑合省合成與鑑定法,台灣復文興業股份有限公司,台南市,P.9~18 (1995)
76. Joel R. Fried, Polymer Science And Technology , Prentice-Hall International,Inc (1995)
77. V. J. Patel, Z. B. Bashir, and D. M. Price, J. Polym. Sci. Polym., Phys. Ed., 33, 1957 (1995)
78. S. Hvilsted, F. Andtuzzi, and M. Pace, Polym. Bull., 26, 23 (1991)
79. K. Yonetake, M. Takahashi, T. Masuko, and M. Ueda, J. Polym. Sci., Polym. Chem.. Ed., 36, 413 (1998)
80. S. J. Sun, K. Y. Hsu, and T. C. Chang, Polym. J., 29, 25 (1997)
81. A. C. Griffin, S. J. Havens, J. Polym. Sci., Polym. Phys. Ed., 19, 951 (1981)
82. 李育德、劉淑芬,含奈液晶聚酯之合成、微結構分析及應用,國立清華大學化工所博士論文 (1995)
83. Liquid Crystalline Polymer Vectra, Polyplastic Co. Ltd (1998)
84. J. X. Li, M. S. Silverstein, A. Hiltner, and E. Baer, “Morphology and mechanical properties og fibers from blends of a liquid crystalline polymer and poly (ethylene terephthalate)”, J. Appo. Polym. Sci., Vol.44, No.9, 1531~1542 (1992)
85. L. Lawrence Chapoy, RecentAdvances In Liqrid Crystalline Polymers, Elsevier AppliedScience Publishers, NewYork, USA, P.99~104 (1985)
86. A. Ciferri, W. R. Krigbaum, Robert B. Meyer, Polymer Liquid Crystals, Academic press, New York London (1982)
87. R. A. Weiss, C. K. Ober, Liquid-Crystalline Polymers, American chemical Society, Washington, DC (1990)
88. M. Kawabe, I. Yamaoka, and M. Kimura, Structures and Thermal Properties of Liquid-Crystalline Poly(ester-co-carbonate), American Chemical Society, P.115~128 (1990)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top