跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連振富
研究生(外文):Chen-Fu Lien
論文名稱:三甲胺和三乙胺在TiO2粉末上的吸附與光化學反應研究
論文名稱(外文):Adsorption and Photochemistry of Trimethylamine and Triethylamine on Powdered TiO2
指導教授:林榮良
指導教授(外文):Jong-Liang Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:72
中文關鍵詞:三甲胺三乙胺表面光化學吸附二氧化鈦傅氏轉換紅外光譜儀
外文關鍵詞:trimethylaminetriethylamineFT-IRadsorptionphotochemistryTiO2
相關次數:
  • 被引用被引用:4
  • 點閱點閱:693
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:0
藉由傅氏轉換紅外光譜儀(FT-IR)來研究三甲胺和三乙胺在TiO2上的吸附,熱化學以及光化學性質。根據我們先前的研究,在35oC時甲胺會以分子性吸附在TiO2上,隨著溫度提高至大約300oC,甲胺會完全脫附,這樣的情形也發生在三甲胺和三乙胺,兩者都是可逆性的吸附在表面上。在有氧照UV光的情況下,三甲胺會分解產生CO2(g),NCO(a),HCOO(a),NHx(a)以及含C=N的物質,但是在熱對照實驗(溫度固定在76oC,不照光)下是沒有發現任何產物,當有水或是氣相分子的三甲胺存在時,並沒有發現NCO(a)的產生,這是因為NCO(a)中的氧原子是來自晶格,由於位置阻塞效應,當有水或是氣相分子的三甲胺存在,表面位置受到限制,因此反應我們沒有發現NCO(a),這在三乙胺的反應中也見到相似的現象。對於三乙胺來說加氧照光反應也會發現CO2(g),NCO(a),HCOO(a),NHx(a)的產物,但是在光反應中C=N的吸收峰並不明顯,只在最後發現含有C=O官能基的產物出現,另外NHx產物的出現比在三甲胺的反應早,表示C-N鍵的裂解三乙胺比三甲胺來得快。對這兩個反應物,其可能的反應步驟以及差異性也提出來個別討論。
The adsorption, photochemistry, and thermal reactions of trimethylamine and triethylamine on TiO2 have been investigated by using Fourier-Transformed Infrared Spectroscopy (FT-IR). In our previous work of methylamine on TiO2, it was found that methylamine is molecularly adsorbed on TiO2 at 35oC and is completely desorbed at about 300oC. Similar results are also found for trimethylamine and triethylamine. Both compounds are reversibly adsorbed on the surface. UV irradiation of TiO2 in the presence of oxygen, adsorbed trimethylamine decomposes to produce carbon dioxide(CO2(g)), isocyanate(NCO(a)), formate(HCOO(a)), NHx(a) and C=N-containing species. But in the thermal control experiment (the surface is held at 76oC, which is the temperature the surface reaches during the TiO2 UV irradiation, without UV irradiation), no such products are seen. In the co-existence of water or gaseous trimethylamine with O2(g), no any NCO(a) signals are detected from trimethylamine photodecomposition. As water or gaseous trimethamine is present on the surface, it may block surface active sites so that the dissociation of trimethylamine to generate NCO(a) is limited. In the photoreactions of triethylamine, the same products of carbon dioxide(CO2(g)), isocyanate(NCO(a)), formate(HCOO(a)) and NHx are observed. However the C=N absorption peak is not so obvious, compared to the case of trimethylamine, C=O absorption peaks appear clearly instead in the end of the photoreaction. Besides, The product of NHx appears earlier than that from trimethylamine is finding represents that the cracking of the C-N bonds of triethylamine is faster. Possible reaction steps and the difference for the two compounds are discussed.
目錄

第一章 緒論
1-1 催化反應 …………………………………………1
1-2 異相催化……… …………………………………2
1-3 光激發原理……………………………………….4
1-4 電荷捕捉………………………………………….10
1-5 紅外光吸收光譜
1-5.1 紅外光譜概論………………………………10
1-5.2 紅外光吸收條件……………………………11
1-5.3 分子振動型態………………………………12
1-5.4 紅外光譜的交互作用………………………13
1-5.5 氫鍵與費米共振……………………………14
1-6 TiO2半導體光催化反應的應用、發展與研究動機…15
第二章 實驗儀器系統及實驗方法
2-1 實驗儀器系統
2-1.1 實驗儀器……………………………………..22
2-1.2 藥品…………………………………………..23
2-2 傅氏轉換紅外線光譜系統
2-2.1 紅外光源……………………………………..24
2-2.2 偵測器………………………………………..25
2-3 系統真空度………………………………………...25
2-4 汞燈系統…………………………………………...26
2-5 紅外光譜樣品槽的設計…………………………….26
2-6二氧化鈦/鎢網( TiO2/W )的製備………………….29
2-7 TiO2/W實驗前處理………………………………….30
2-8藥品的前處理………………………………………..31
第三章 結果與討論
3-1三甲胺的吸附研究…………………………………..33
3-2 三甲胺的光反應
3-2.1 (CH3)3N(a)有氧無氧之下的光反應………..34
3-2.2 (CH3)3N(a)有氧之下的熱對照反應………..37
3-2.3 (CH3)3N(g)有氧之下的光反應……………..37
3-2.4 (CH3)3N(a)和(CH3)3N(g)有氧加水之下的光反
應…………….39
3-3三甲胺的熱反應……………………………………..40
3-4三乙胺的吸附研究…………………………………..41
3-5 三乙胺的光反應
3-5.1 (C2H5)3N(a)在有氧之下的光反應………….42
3-5.2 (C2H5)3N(a)有氧熱對照…………………….44
3-5.3 (C2H5)3N(g)有氧光反應…………………….44
3-5.4 (C2H5)3N(a)和(C2H5)3N(g)有氧加水的照光反
應……………...45
3-6 三乙胺的熱反應…………………………………….46
第四章 結論……………………………………………..68
第五章 參考文獻…………………………………………69
1. J. C. Vickerman, Surface Analysis, Wiley & Sons, New York, 1997, p2.
2. P. W. Atkins, Physical Chemistry, Oxford University, 1994, P997.
3. R. A. Alberty and R. J. Silbey, J. Physical Chemistry, John Wisely & Sons, New York, 1995, p839-840.
4. 卓靜哲,何瑞文,黃守仁,施良垣,蘇世剛,物理化學,三民書局,台南市, 1994年,第507-508頁.
5. R. A. Alberty and R. J. Silbey, Physical Chemistry, john Wiely & Sons, New York, 1995, p838.
6. G. A. Somorjai, Introduction to surface chemistry and catalysis, Wiley & Sons, New York, 1994, p443.
7. A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev, 1995, 95, p735.
8. Y. Nosaka and M. A. Fox, J. Phys. Chem, 1988, 92, p1893.
9. J. Fan and J. T. Yate, J. Am. Chem. Soc, 1996, 118, p4686.
10. M. A. Fox and M. T. Dulay, Chem. Rev, 1993, 93, p341.
11. D. A. Skoog and J. J. Leary, Principles of Instrumental Analysis, 4th, Saunders College Publishing, New York, 1992, p255.
12. 游瑞成譯, 有機光譜學, 財團法人徐氏基金會,台北縣, 1998年, 第94-95頁.
13. A. Fujishima and K. Honda, Nature, 1972, 37, p238.
14. A. J. Bard, J. Phys. Chem, 1982, 86, p172.
15. A. J. Bard, Science, 1980, 207, p139.
16. D. F. Ollis, E. Pelizzetti and N. Serpone, Environ. Sci. Technol, 1991, 25, p1522.
17. O. Legrini, E. Oliveros and A. M. Braun, Chem. Rev, 1993, 93, p671.
18. K. C. G. Low, S. R. McEvoy and R. W. Matthews, Environ. Sci. Technol, 1991, 25, p460.
19. M. Scgiavello, Ed. Photocatalysis and Enviroment, Kluwer Academic Publishers, Dordrecht, 1988.
20. A. Wold, Chem. Mater, 1993, 5, p280.
21. L. Cao, F.-J. Spiess, A. Huang and S. L. Suib, J. Phys. Chem. B, 1999, 103, p2912.
22. J. K. Burdett, T. Hugbands, J. M. Gordon, J. W. Richardson and J. V. Smith, J. Am. Chem. Soc, 1987, 109, p3639.
23. W. Erley, R. Xu and J. C. Hemminger, Surface Science, 1997, 389, p272-286.
24. I. R. Slagle, J. F. Dudlch and D. Gutman, J. Phys. Chem, 1979, 83, p3065-3070.
25. P. Neta and R.W. Fessenden, J. Phys. Chem, 1971, 75, p738-748.
26. V. M. Schreiber, M. Rospenk and L. Sobczyk, Chem. Phys. Lett, 1999, 304, p73-78.
27. M. Primet, P. Pichat and M. Mathieu, J. Phys. Chem, 1971, 75, p1221-1226.
28. T. D. Goldfarb and B. N. Khare, J. Chem. Phys, 1967, 46, p3379-3384.
29. S. J. Cyvin and O. Gebhardt, J. Mol. Structure, 1972, 12, p215-218.
30. D. C. Mckean, J. Mol. Structure, 1975, 29, p81-96.
31. C. P. A. Mulcahy, A. A. Aquino, J. J. Rogers and T. S. Jones, J. Chem. Phys, 1996, 104, p9120-9126.
32. K. A. Pearlstine and C. M. Friend, J. Am. Chem. Soc, 1986, 108, p5837-5842.
33. J. W. Pavlik and S. Tantayanon, J. Am. Chem. Soc, 1981, 103, p6755.
34. S. Yanagida, H. Kizumoto, Y. Ishimaru, C. Pac and H. Sakurai, Chem. Lett, 1985, p141.
35. K. A. Pearlstine and C. M. Friend, J. Am. Chem. Soc, 1986, 108, p5842-5847.
36. H. Kasturirangan, V. Ramakrishnan and J. C. Kuriacose, J. Catal, 1981, 69, p216.
37. S. Nishimoto, B. Ohtani, T. Yoshikawa and T. Kagiya, J. Am. Chem. Soc, 1983, 105, p7180.
38. M. A. Fox and J. N. Younathan, Tetrahedron, 1986, 42, p6285.
39. J. Fan and J. T. Yates, J. Phys. Chem, 1994, 98, p10621.
40. MDC, High Vacuum Components, Catalog, 1996-97, p142.
41. J. C. S. Wong, A. Linsebigler, G. Lu, J. Fan and J. T. Yates, J. Phys. Chem, 1995, 99, p335.
42. Degussa Technical Bulletin Pigments Report NO.56, 1990, p13.
43. C. N. Rusu and J. T. Yates, J. Phys. Chem. B, 2000, 104, p1729-1737.
44. T. S. Nunney, J. J. Birtill and R. Ravl, Surface Science, 1999, 427-428, p282-287.
45. W. F. Murphy and F. Zerbetto, J. Phys. Chem, 1993, 97, p581-595.
46. L. F. Liao, W. C. Wu, C. C. Chuang and J. L. Lin, J. Phys. Chem. B, 2001, 105, p5928-5934.
47. C. C. Chuang, J. S. Shiu and J. L. Lin, Phys. Chem. Chem. Phys, 2000, 2, p2629.
48. C. C. Chuang, C. C. Chen and J. L. Lin, J. Phys. Chem. B, 1999, 103, p2439.
49. C. C. Chuang, W. C. Wu, M. C. Huang, I. C. Huang and J. L. Lin, J. Catal., 1999, 185, p423.
50. C. Su, J. C. Yeh, C. C. Chen, J. C. Lin and J. L. Lin, J. Catal, 2000, 194, p45.
51. G. T. Went and A. T. Bell, Catal. Lett, 1991, 11, p111.
52. Went, L. J. Leu, S. J. Lombardo and A. T. Bell, J. Phys.Chem, 1992, 96, p2235.
53. G. D. Parfitt, J. Ramsbotham and C. H. Rochester, Trans. Faraday Soc, 1971, 67, p841.
54. A. Markovits, J. Ahdjoudj and C. Minot, Surface Science, 1996, 365, p649.
55. G. Ramis and P. Forzatti, Appl. Catal, 1990, 64, p243.
56. R. M. Pittman and A. T. Bell, Catal. Lett, 1994, 24, p1.
57. W. C. Wu, L. F. Liao, C. C. Chuang and J. L. Lin, J. Catal, 2000, 195, p416.
58. J. Zhuang, C. N. Rusu and J. T. Yates, J. Phys. Chem. B, 1999, 103, p6957.
59. C. Johnston, N. Jorgensen and C. H. Rochester, J. Chem. Soc. Faraday Trans. 1, 1989, 85, p1111.
60. F. Solymosi, L. Völygesi and J. Sárkány, J. Catal, 1978, 54, p336.
61. L. F. Liao, W. C. Wu, C. Y. Chen and J. L. Lin, J. Phys. Chem. B, 2001, 105, p7678-7685.
62. W. C. Wu, C. C. Chung and J. L. Lin, J. Phys. Chem. B, 2000, 104, p8719-8724.
63. J. S. Stato, J. Phys. Chem, 1987, 91, p2895.
64. P. Sauvageau and C. Sandorfy, Can. J. Chem, 1960, 38, p1901-1910.
65. R. C. Paul, R. N. Sawhney and S. L. Chadha, Indian J. Chem, 1967, 5, p631-634.
66. G. A. M. Hussein, N. Sheppard, M. I. Zaki and R. B. Fahim, J. Chem. Soc. Faraday Trans, 1991, 87, p2661-2665.
67. D. Forney, M. E. Jacox and W. E. Thompson, J. Mol. Spectrosc, 1993, 157, p479-493.
68. J. P. Perchard, Chem. Phys, 2001, 266, p109- 124.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top