跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 07:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡岳峰
研究生(外文):Yueh-Feng Tsai
論文名稱:利用LCBO方法探討分子內的軌域作用
論文名稱(外文):Investigation of Intramolecular Orbital Interactions Using LCBO Method
指導教授:蘇世剛
指導教授(外文):Shyh-Gang Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:137
中文關鍵詞:未定域系統透過分子內其它鍵性軌域行分子內的軌域作用未定域化系統透過空間直接行分子內的軌域作用
外文關鍵詞:TBITSI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是利用Gaussian 98,以6-31G基底,計算分子RHF型波涵數,並用Weinhold的天然鍵性軌域( NBO )得到定域化鍵性軌域的LCBO( linear combination of bond orbital )數據,根據此鍵性軌域數據,探討delocalized π電子系統( butadiene、hexadiene、diarylethanes及其衍生物 )或含氮未鍵結電子對系統( diaminoethane、pyrazine、DMP+、diazabicyclooctane、azo-compound )及含碳自由基系統( benzyne、pyridinyl )等飽合分子分子內的軌域作用。
LCBO所得到的分子鍵性軌域數據結果顯示,分子內的軌域作用後最大對稱性組成分子軌域能量比最大非對稱性組成分子軌域能量低,分子主要為TSI,而最大非對稱性組成分子軌域能量比最大對稱性組成分子軌域能量低,則分子主要為TBI。
分子內的軌域作用會影響分子內中心鍵鍵結(σ)及反鍵結(σ*)佔有比例,σ%+σ*% < 10%,分子主要為TSI,σ%+σ*% > 10%,分子主要為TBI。同時,具TBI且同類型分子,其中心反鍵結在中心鍵的佔有比例(σ*% /σ% +σ*%)變大,中心鍵鍵序值有變小的趨勢。
利用NBO Fock matrix數據可以表現鍵性軌域彼此間的藕合強度,我們發現,兩含未鍵結電子對的原子插入四個(含四個)以上的σ鍵骨架,則分子只可能產生TSI。而NBO Fock matrix數據也可反映出,構形相同的分子上,連接同族且電負度較大的原子,其TBI效應會明顯大於電負度較小的原子。
另外,同一分子不同的構形會造成不同分子內的軌域作用,反式構形,分子主要為TBI,順式構形,則分子主要為TSI。從NBO Fock matrix數據同時可反映出,分子構形一旦越偏離了反式構形,TBI效應會降低,TSI效應開始增強。
利用分子內軌域作用探討有機反應,是一項很有力的解釋。分子內的軌域作用可解釋,同樣進行 [2+2+2]retro-cycloaddition的環己烷橋上連接的參環開環速度會比四環的開環速度來得快,且參環裂解後的產物也比四環穩定,這是因為環己烷橋上若連接的是參環時,產生裂解反應時具有TBI的效應產生。
We use Gaussian 98, 6-31G basis, to calculate the RHF-type wave functions of desired molecules. Also we gain the LCBO(linear combination of bond orbita) data of localized bond orbitals by using Weinhold Natural Bond Orbital (NBO). Based on those data, we make a serious studies on intramolecular orbital interactions of delocalized π-electron systems (ex. butadiene, hexadiene, diarylethanes and their derivatives), non-bonding electron pairs systems of nitro-molecules (ex. diaminoethane, pyrazine, DMP+, diazabicyclooctane, azo-compound), and carbon free radical system (ex. benzyne, pyridinyl).
The data of bond orbitals from LCBO show that after the interaction of orbital within a molecule, the MO potential which composed by symmetrical orbitals of maximum NBO coefficients is lower than that which composed by anti-symmetrical orbitals of maximum NBO coefficients, when TSI are the main part of a molecule. In the other way, when TBI are the main composition of a molecule, the results shown in the data would be opposite to those of TSI.
The intramolecular orbital interactions would affect the occupying
ratio of central bonding (σ) and central antibonding (σ*). σ%+σ*% < 10% , while TSI is the main part of a molecule, σ%+σ*% > 10% , while TBI is the main part of a molecule. Moreover, as the molecule is composed of TBI, the occupying ratio of its central antibonding in central bond(σ*% /σ%+σ*%) would get larger and the value of bond order is tending to getting smaller.
It can show the coupling strength among the bond orbitals by NBO Fock matrix data. It is discovered that as two atoms composed of lone pairs are inserted into four (or above) σ-bonding framework, TSI can be only produced. On the other hand, the data of NBO Fock matrix also shows that as molecules of the same configuration connect atoms whose electronegativity is larger of the same group, the TBI effect would apparently stronger than those which connect atoms of smaller electronegativity.
In addiion, a molecule in different configurations would couse different intramolecular orbital interactions, TBI is the main part as it is anti-configuration while TSI is to trans configuration. From the data of NBO Fock matrix, as soon as the configuration is tendind to differ from anti-configuration, the TBI effect would get weaker since the TSI effect would be getting stonger.
It is shown to be a powerful tool that we can use the intramolecular orbital interactions to study chemical reactions. The intramolecular orbital interactions can explain that doing [2+2+2]retro-cyclo-addition, in hexamethylene, the three-membered rings connecting the bridge break the ring would faster than four-membered rings. After splitting the triple ring, the products are more stable than those of four-membered rings, which is because if it is three-membered rings to connect the bridge of hexamethylene, TBI effect would occur when splitting is happening.
目 錄
第一章 緒論 1
第二章 理論背景 5
2-1 對稱(symmetry)與反對稱(antisymmetry) 5
2-2 以對稱中心定義對稱與反對稱 10
2-3 Through space interaction (TSI) 12
2-4 Through bond interaction (TBI) 18
2-5 天然鍵性軌域(natural bond orbital,NBO) 27
2-6 鍵性軌域表示法 37
第三章 計算方法 40
3-1 前言 40
3-2 輸入格式及輸入指令的函數說明 41
第四章 結果與討論 45
4-1 利用LCBO數據判定TSI與TBI以及TSI、TBI與中心鍵佔有比例的關係 45
4-1-1前言 45
4-1-2從LCBO數據判定TBI 46
4-1-3從LCBO數據判定TSI 57
4-1-4 TSI、TBI與中心鍵佔有比例的關係 77
4-1-5結論 83
4-2 TSI與TBI對中心鍵鍵序值的影響 85
4-2-1前言 85
4-2-2具TBI分子其中心鍵佔有比例及鍵序的關係 87
4-2-3結論 90
4-3 TBI大於TSI造成能量軌域反轉 91
4-3-1前言 91
4-3-2以NBO Fock matrix探討分子內的TBI、TSI 95
4-3-3 TBI、TSI與電負度的關係 100
4-3-4結論 106
4-4 分子構形與TSI、TBI的關係 107
4-4-1前言 107
4-4-2分子越偏離反式構形、其TBI的效應減低 109
4-4-3結論 119
4-5 未來展望 120
第五章 總結論 125
附錄一 128
附錄二 129
附錄三 130
附錄四 131
參考文獻 134
(1)Hoffmann, R. Acc. Chem. Res. 1971, 4, 1-9.
(2)Sarneel, R.; Worrell, C. W.; Pasman, P.; Verhoeven, J. W.; Mes, G. F.
Tetrahedron 1980, 36, 3241-8.
(3)Pasman, P.; Rob, F.; Verhoeven, J. W. J. Am. Chem. Soc. 1982, 104, 5127-33.
(4)Paddon-Row, M. N. Acc. Chem. Res. 1982, 15, 245.
(5)Balaji, V.; Jordan, K. D.; Burrow, P. D.; Paddon-Row, M. N.; Patney, H. K. J. Am. Chem. Soc. 1982, 104, 6849-51.
(6)Calcaterra, L. T.; Closs, G. L.; Miller, J. R. J. Am. Chem. Soc. 1983, 105, 670-1.
(7)Balaji, V.; Jordan, K. D.; Gleiter, R.; Jaehne, G.; Mueller, G. J. Am. Chem. Soc. 1985, 107, 7321-3.
(8)Verhoeven, J. W.; Paddon-Row, M. N.; Hush, N. S.; Oevering, H.; Heppener, M. Pure Appl. Chem. 1986, 58, 1285-90.
(9)Miller, J. R. NATO ASI Ser., C 1987, 241-54.
(10)Oevering, H.; Paddon-Row, M. N.; Heppener, M.; Oliver, A. M.; Cotsaris, E.; Verhoeven, J. W.; Hush, N. S. J. Am. Chem. Soc. 1987, 109, 3258-69.
(11)Paddon-Row, M. N.; Jordan, K. D. Mol. Struct. Energ. 1998, 6, 115-94.
(12)Paddon-Row, M. N.; Jordan, K. D. J. Am. Chem. Soc. Commun. 1988, 1508-10.
(13)Oevering, H.; Verhoeven, J. W.; Paddon-Row, M. N.; Warman, J. M. Tetrahedron 1989, 45, 4751-66.
(14)Lawson, J. M.; Craig, D. C.; Paddon-Row, M. N.; Kroon, J.; Verhoeven, J. W. Chem. Phys. Lett. 1989, 164, 120-5.
(15)Jocachim, C.; Launay, J. P.; Woitellier, S. Chem. Phys. 1990, 147, 131-41.
(16)Falcetta, M. F.; Jordan, K. D.; McMurry, J. E.; Paddon-Row, M. N. J. Am. Chem. Soc. 1990, 112, 579-86.
(17)Paddon-Row, M. N.; Verhoeven, J. W. New J. Chem. 1991, 15, 107-16.
(18)Scholes, G. D.; Ghiggino, K. P.; Oliver, A. M.; Paddon-Row, M. N. J. Am. Chem. Soc. 1993, 115, 4345-9.
(19)Brunck, T. K.; Weinhold, F. J. Am. Chem. Soc. 1976, 98, 4392-3.
(20)Hoffmann, R.; Imamura. A.; Hehre, J. W. J. Am. Chem. Soc. 1968, 90, 1499-1509.
(21)Heilbronner, E.; Muszkat, K. A. J. Am. Chem. Soc. 1970, 92, 3818-21.
(22)Brunck, T. B.; Weihold, F. J. Am. Chem. Soc. 1976, 98, 4932.
(23)Koopmans, T. C. Physica. 1933, 1, 104.
(24)Bernard Miller. Advanced Organic Chemistry: Reactions and Mechanisms. 1998, 27-8.
(25)Bishof, P.; Hashmall, J. A.; Heilbron, E.; Hornung, V. Helv. Chim.
Acla, 1969, 52, 1745.
(26)Bodor, N.; Dewar, M. J. S.; Worley, S. D. ibid, 1970, 92, 19.
(27)Pople, J. A.; Beveridge, D. L. Approximate Molecular Orbital
Theory, McGraw-Hill, New York, 1970.
(28)Bischof, P.; Hashmall, J. A.; Heilbronner, E.; Hornung, V. Tetrahedron Lett. 1969, 4025-8.
(29)McWeeny, R. Coulson’s Valence, 3rd Ed., Oxford University Press, New York, 1979.
(30)Reed, A. E.; Curtiss, L. A.; Weihold, F. Chem. Rev. 1988, 88.
(31)Levine, I. N. Quantum Chemistry, 4th Ed., Prentice-Hall, New York, 1911.
(32) 陳邇浩,成功大學化學研究所博士論文,民國87年,第29頁。
(33) Chang, T. C. J. Chin. Soc. 1996, 43, 371
(34) Becke, A. D. Phys. Rev. A 1998, 38, 3098.
(35) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1998, 37, 785.
(36) Brouwer, A. M.; Langkilde, F. W.; Bajdor, K.; Wilbrandt, R. Chem. Phys. Lett. 1994, 225, 386.
(37) Brouwer, A. M.; Langkilde, F. W.; Wilbrandt, R.; Zwier, J. M.; Mortensen, O. S. J. Am. Chem. Soc. 1998, 120, 3748-3757.
(38) Brundle, C. R.; Robin, M. B.; Kuebler, N. A. J. Am. Chem. Soc. 1971, 94, 1466.
(39) Brundle, C. R.; Robin, M. B.; Kuebler, N. A.; Basch, H. J. Am. Chem. Soc. 1972, 94, 1451.
(40) Heilbronner, E.; Maier, J. P. Helv. Chim. Acta. 1974, 57, 151.
(41) Armstrong, D. R.; Perkins, P. G.; Stewart, J. P. J. Chem. Soc. Dalton. 1973, 627.
(42) Grob, C. A. Angew. Chem., Int. Ed. Engl. 1969, 8, 535-622.
(43) Cookson, R. C.; Henstock, J.; Hudec, J. J. Am. Chem. Soc. 1966, 88, 1060-2.
(44) Hude, J. Chem. Commun. 1970, 829-31.
(45) Paddon-Row, M. N.; Wong, S. S.; Jordan, K. D. J. Am. Chem. Soc. 1990, 112, 1710.
(46) Spielmann, W.; Fick, H. H.; Meyer, L. U.; de Meijere, A.Tetrahedron Lett. 1976, 45, 4057.
(47) Rucker, C.; Muller-Botticher, H.; Braschwitz, W. D.; Prinzbach, H.;
Reifenstahl, U.; Imgartinger, H. Liebigs. Ann. Recueil. 1997, 967.
(48) Zipperer, B.; Muller, K. H.; Gallenkamp, B.; Hildebrand, R.;
Fletschinger, M.; Burger, D.; Pillat, M.; Hunkler, D.; Knothe, L.;
Fritz, H.; Prinzbach, H. Chem Ber. 1988, 121, 757.
(49) Sawicka, D.; Wilsey, S.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 864.
(50) Berson, J. A.; Olin, S. S.; Petrillo, E. W., Jr.; Pickart, P. Tetrahedron.
1974, 30, 1639.
(51) Chen, E. H.; Chang, T. C. J. Mol. Struct. (Theochem). 1998, 431, 127-36.
(52) Chen, E. H.; Chang, T. C. J. Mol. Struct. (Theochem). 1998, 429, 153-59.
(53) Chang, T. C. J. Mol. Struct. (Theochem). 1997, 391, 151-57.
(54) Chang, T. C. J. Mol. Struct. (Theochem). 1997, 398-99, 359-64.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文