跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/29 00:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳國龍
研究生(外文):Kuo-Lung Wu
論文名稱:氣態氫化鈉分子C1S+能態高能位與低能位的光譜探討
論文名稱(外文):Spectroscopic Study of the NaH C1S+Higher and Lower Vibrational State Levels
指導教授:黃守仁黃守仁引用關係
指導教授(外文):Thou-Jen Whang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:127
中文關鍵詞:雙光子共振螢光減弱光譜氫化鈉分子激發光譜法雷射誘導螢光光譜法
外文關鍵詞:LIFlaser induced fluorescenceNaHexcitation spectrumOptical- Optical Double Resonance Fluorescence D
相關次數:
  • 被引用被引用:1
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在本光譜學研究中,我們利用兩台脈衝式染料雷射進行雙光子共振螢光衰減光譜技術(Optical-Optical Double Resonance Fluorescence Depletion Spectroscopy)來偵測氣態氫化鈉分子高能位的C1�獺牊q子態,我們採用疊加式雙光子激發(Stepwise OODR excitation)的方式進行實驗,並藉由檢測A1�獺� �_ X1�獺洈瑪疇�衰減訊號來找尋C1�獺牊q子態的振轉能級。
我們觀測的能量範圍位於36690 ~ 41500 cm-1總共得到v*-15 ~ v*-6及v*+9 ~ v*+17共19個振動量子數。觀測的轉動量子數分佈於J=1 ~ 11中,共計有223個振轉能階被觀測到。其振動能階能量差ΔGv+1/2分佈於189 ~ 89 cm-1中,轉動常數Bv則分佈於0.488 ~ 0.636 cm-1中。
未來期望能再加入更詳盡的實驗數據,且進一步確認絕對振動量子數v值並推得分子常數,使氫化鈉分子C1�獺牊q子態的位能曲線更臻完整。
In this study, nineteen vibrational levels of the NaH C1�獺� electronic state have been observed by the Optical-Optical Double Resonance Fluorescence Depletion Spectroscopy (OODR-FDS) technique. We applied the stepwise OODR excitation in our experiments. The OODR spectra of the NaH C1�獺� electronic state have been taken by monitoring the fluorescence depletion of the A1�獺� state to the X1�獺� state.
We have observed 223 rovibrational levels (including 19 vibrational levels) of the C1�獺� electronic state, they are in the range of 36690 ~ 41500 cm-1. The observed vibrational level spacings of ΔGv+1/2 are in the range 189 ~ 89 cm-1and derived rotational constants Bv are 0.488 ~ 0.636 cm-1.
However, we have to confirm the absolute vibrational quantum number by a further study and the Dunham coefficients can be derived to construct the complete potential energy curve of the NaH C1�獺� electronic state.
目 錄

中文摘要…………………………………………………………………………... Ⅰ
英文摘要…………………………………………………………………………... Ⅱ
目錄………………………………………………………………………………... Ⅲ
表目錄……………………………………………………………………………... Ⅵ
圖目錄……………………………………………………………………………... Ⅶ
第一章 緒論………………………………………………………………….. 1
1-1 前言……………………………………………………………………. 1
1-2 有關氫化鈉分子電子態的研究………………………………………. 2
1-2-1 氫化鈉分子的X1�獺洬MA1�獺牊q子態之傳統光譜法研究…….... 2
1-2-2 氫化鈉分子的X1�獺洬MA1�獺牊q子態之雷射光譜研究……….... 5
1-2-3 氫化鈉分子的C1�獺牊q子態之理論研究……………………...... 8
1-2-4 氫化鈉分子的C1�獺牊q子態之光譜實驗研究………………...... 9
第二章 理論………………………………………………………………..… 19
2-1 雙原子分子的波函數與能量………………………………...……….. 19
2-2 雙原子分子的項符………………………………………………...….. 24
2-3 雙原子分子躍遷選擇定律…….……………………………………… 24
2-4 杭得耦合(Hund’s Coupling Case)………………………................. 26
2-5 法蘭克-康登原理(Franck-Condon principle)……………………….. 26
2-6 同位素效應(Isotope Effect)…………………………………………. 28
第三章 實驗………………………………………………………………….. 29
3-1 實驗裝置與儀器…………………………………...…………….…..... 29
3-1-1 實驗藥品………………………………………...…………..….. 29
3-1-2 雷射系統………………………………………...…………..….. 29
3-1-3 熱管爐系統…………………………………………...……..….. 34
3-1-4 偵測系統…………………………………………………..……. 36
3-1-5 訊號資料處理…………………..………………………………. 37
3-1-6 頻率校正部分…………………..………………………………. 38
3-2 實驗介紹……………………………..……………………….….……. 40
3-2-1 雙光子共振光譜法簡介…………..……………………………. 40
3-2-2 實驗方法…………………………..……………………………. 43
3-2-3 實驗步驟…………………………..……………………………. 50
第四章 結果與討論………………………………………………………….. 58
4-1 確定氫化鈉分子存在於熱管爐中…………...…………………….…. 58
4-2 氫化鈉分子的X1��+和A1��+電子態之分子常數…….………………, 60
4-3 氫化鈉分子高能位C1��+電子態的OODR偵測……………………… 60
4-3-1 實驗結果………………………..………………………………. 60
4-3-2 確定觀察到氫化鈉分子高能位之C1��+電子態……………….. 62
4-3-2-1 長波長範圍掃瞄圖譜………………………….….…… 62
4-3-2-2 確定偵測到的訊號是氫化鈉分子之C1��+電子態.....… 85
4-3-3 待完成的實驗計畫……………..………..................................... 86
第五章 結論.….….….….….….….….….….….….….….….….….….….….. 91
參考文獻…..….….….….….….….….….….….….….….….….….….….…... 92
附錄..........................………………………………………………………….. 99
參考文獻

1. Wolfgang Demtröder,�cLaser Spectrocopy �c, Springer-Verlag, Berlin, 569 (1981)
2. G. Herzberg, �cMolecular Spectra and Molecular Structure: Vol. 1, Spectra of Diatomic Molecules�c, Robert E. Krieger Publishing Co., Malabar, Florida (1989)
3. W. C. Stwalley and W. T. Zemke, J. Phys. Chem. Ref. Data 22, 87 (1993)
4. W. C. Lin, J. J. Chen, and W. T. Luh, J. Phys. Chem. A 101, 6709 (1997)
5. J. J. Chen, W. T. Luh, and G. H. Jeung, J. Chem. Phys. 110, 4402 (1999)
6. Y. L. Huang, W. T. Luh, G. H. Jeung, and F. Xavier Gadea, J. Chem. Phys. 113, 683 (2000)
7. W. C. Stwalley, W. T. Zemke, and S. C. Yang, J. Phys. Chem. Ref. Data 20, 153 (1991)
8. T. Hori, Z. Phys. 62, 352 (1930)
9. T. Hori, Z. Phys. 71, 478 (1931)
10. E. Olson, Z. Phys. 93, 206 (1934)
11. R. C. Pankhurst, Nature, Lond. 147, 643 (1941)
12. R. C. Pankhurst, Proc. Phys. Soc. Lond. A 62, 191 (1949)
13. F. B. Orth, W. C. Stwalley, S. C. Yang, and Y. K. Hsieh, J. Mol. Spectrosc. 79, 314 (1980)
14. J. L. Dunham, Phys. Rev. 41, 713 (1932)
15. K. V. L. N. Sastry, E. Herbst, and F. C. De Lucia, J. Chem. Phys. 75, 4753 (1981)
16. K. V. L. N. Sastry, E. Herbst, and F. C. De Lucia, The Astrophysical Journal 248, L53 (1981)
17. K. R. Leopold, L. R. Zink, K. M. Evenson, and D. A. Jennings, J. Mol. Spectrosc. 122, 150 (1987)
18. Ulrich Magg and Harold Jones, Chem. Phys. Lett. 146, 415 (1988)
19. A. G. Maki and W. B. Olson, J. Chem. Phys. 90, 6887 (1989)
20. P. J. Dagdigian, J. Chem. Phys. 64, 2609 (1976)
21. P. J. Dagdigian, J. Chem. Phys. 71, 2328 (1979)
22. P. Baltayan, A. Jourand, and O. Nedelec, Phys. Lett. 58A, 443 (1976)
23. M. Giroud and O. Nedelec, J. Chem. Phys. 73, 4151 (1980)
24. E. S. Sachs, J. Hinze and N. H. Sabelli, J. Chem. Phys. 62, 3377 (1975)
25. O. Nedelec and M. Giroud, J. Chem. Phys. 79, 2121 (1983)
26. A. M. Karo, M. A. Gardner, and J. R. Hiskes, J. Chem. Phys. 62, 3367 (1975)
27. E. S. Sachs, J. Hinze, and N. H. Sabelli, J. Chem. Phys. 62, 3384 (1975)
28. M. Meyer and P. Rosmus, J. Chem. Phys. 63, 2356 (1975)
29. P. Carsky, I. Kozak, V. Kello, and M. Urban, Collection Czechoslov. Chem. Commun. 42, 1460 (1977)
30. R. E. Olson and B. Liu, J. Chem. Phys. 73, 2817 (1980)
31. M. Brieger, A. Hese, A. Renn, and A. Sodeik, Chem. Phys. Lett. 78, 153 (1981)
32. J. T. Bahns and W. C. Stwalley, Appl. Phys. Lett. 44, 826 (1984)
33. M. Rafi, N. Ali, K. Ahmad, I. A. Khan, M. A. Baig, and Z. Iqbal, J. Phys. B: At. Mol. Opt. Phys. 26, L129 (1993)
34. S. Lochbrunner, M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, Z. Phys. D 38, 35 (1996)
35. A. Klamminger, M. Motzkus, S. Lochbrunner, G. Pichler, K. L. Kompa, and P. Hering, Appl. Phys. B 61, 311 (1995)
36. J. T. Bahns, C. C. Tsai, B. Ji, J. T. Kim, G. Zhao, W. C. Stwalley, J. C. Bloch, and R. W. Field, J. Mol. Spectrosc. 186, 222 (1997)
37. M. Ciocca, C. E. Burkhardt, J. J. Leventhal, and T. Bergeman, Phys. Rev. A 45, 4720 (1992)
38. W. C. Martine and R. Zalubas, J. Chem. Phys. Ref. Data 10,153 (1981)
39. P. Risberg, Ark. Fys. 10, 583 (1956)
40. C. E. Moore,“Atomic Energy Levels.”NSRDS-NBS 35,1971
41. F. P. Pesl, S. Lutz, and K. Bergmann, Eur. Phys. J. D 10, 247 (2000)
42. W. T. Zemke, R. E. Olson, K. K. Verma, and W. C. Stwalley, J. Chem. Phys. 80, 356 (1984)
43. R. W. Numrich and D. G. Truhlar, J. Phys. Chem. 79, 2745 (1975)
44. K. M. Griffing, J. Kenney, J. Simons, and K. D. Jordan, J. Phys. Chem. 63, 4073 (1975)
45. R. E. Olson and M.Kimura, Phys. Review A 32, 3092 (1985)
46. R. K. Janev and Z. M. Radulovic, Phys. Rev. A 17, 889 (1978)
47. A. S. Dickinson, R. Poteau, and F. X. Gadea, J Phys. B 32, 5451 (1999)
48. H. S. Lee, Y. S. Lee, and G. H. Jeung, Chem. Phys. Lett. 325, 46 (2000)
49. P. E. Cade and W. M. Huo, J. Chem. Phys. 47, 649 (1967)
50. E. S. Sachs, J. Hinze, and N. H. Sabelli, J. Chem. Phys. 62, 3389 (1975)
51. E. S. Sachs, J. Hinze, and N. H. Sabelli, J. Chem. Phys. 62, 3393 (1975)
52. N. S. Murth, T. Manisekaran, and N. S. Bapat, Quant. Spectrosc. Radiat. Transfer 29, 183 (1983)
53. G. H. F. Diercksen and A. J. Sadlj, Chem. Phys. 158, 89 (1991)
54. A. Pardo, J. J. Camacho, J. M. L. Poyato, and E. Martin, Chem. Phys. 121, 41 (1988)
55. F. Jenc and B. A. Brandt, J. Chem. Phys. 83, 5486 (1985)
56. D. C. Jain and P. San, J. Chem. Phys. 38, 1553 (1963)
57. O. Mo, A. Riera, and M. Yanez, Phys. Rev. A 31, 3977 (1985)
58. H. H. Telle, J. Mol. Structure 143, 565 (1986)
59. S. R. Langhoff and C. W. Bauschlicher, J. Chem. Phys. 85, 5158 (1986)
60. B. Bussery and M. Saute, Chem. Phys. 109, 39 (1986)
61. P. Fuentealba and O. Reyes, J. Chem. Phys. 87, 5338 (1987)
62. M. Giroud and O. Nedelec, Chem. Phys. 93, 127 (1985)
63. R. Al-Tuwirqi, A. Bakry, M. Rafi, and Fayyazuddin, J. Phys. B 30, 2033 (1997)
64. P. D. Kleibr, T. H. Wong, and S. Bililign, J. Chem. Phys. 98, 1101(1993)
65. S. L. Savrda and I. M. Littlewood, Chem. Phys. Lett. 245, 427 (1995)
66. P. Hering, S. L. Cunha, and K. L. Kompa, J. Phys. Chem. 91, 5459 (1987)
67. M. Motzkus, G. Pichler, M. Dillmann, K. L. Kompa, and P. Hering, Appl. Phys. B 57, 261 (1993)
68. M. Motzkus, G. Pichler, K. L. Kompa, and P. Hering, J. Chem. Phys. 106, 9057 (1997)
69. G. Pichler, R. R. B. Correia, S. L. Cunha, K. L. Kompa, and P. Hering, Optics Communications 92, 346 (1992)
70. S. Bililign and P. D. Kleiber, J. Chem. Phys. 96, 213 (1992)
71. R. Rydberg, Z. Physik 73, 376 (1931)
72. O. Klein, Z. Physik 76, 226 (1932)
73. R. Rydberg, Z. Physik 80, 514 (1933)
74. 丁勝懋,�c雷射工程導論�c,(第三版,中央出版社出版,1993)
75. P. Baltayan, A. Jourand, and O. Nedelec, Phys. Lett. 58A, 443 (1976)
76. S. Gerstenkorn and P. Luc,“Atlas du Spectre D’Absorption de la Molecule d’Iode”, CNRS, Paris, (1978)
77. S. Gerstenkorn and P. Luc, Rev. Phys. Appl. 14, 791 (1979)
78. H. M. Crosswhite, J. Res. of National Bureau of standard-A. Phys. and Chem. 79, 17 (1975)
79. X. Zhu, A. H. Nur, and P. Misra, J Quant. Spectrosc. Radiat Transfer 52, 167 (1994)
80. V. Kaufman and B. Edlen, J. Phys. Chem. Ref. Data 3, 825 (1974)
81. 張耀元,�c氣態氫化鈉分子高能位C1��+電子態之雙光子共振光譜研究�c,國立成功大學化學所碩士論文(2000年六月)
82. 廖美惠,�c確認氣態氫化鈉C1��+電子態振動量子數及其光譜研究�c,國立成功大學化學所碩士論文(2001年六月)
83. 徐書楷,�c單氫化鋰(7LiD)分子C電子激發態之雙光共振(OODR)光譜學研究�c,國立中興大學化學研究所碩士論文(2001年七月)
84. Li Li, A. M. Lyyra, John T. Bahns, and W. C. Stwalley, J. Mol. Spectrosc. 134, 119 (1989)
85. Y. L. Pan, D. P. Sun, L. S. Ma, L. E. Ding, and Z. G. Wang, J. Mol. Spectrosc. 169, 534 (1995)
86. T. J. Whang, W. C. Stwalley, L. Li, and A. M. Lyyra, J. Mol. Spectrosc. 155, 184 (1992)
87. Li Li, A. M. Lyyra, and W. C. Stwalley, J. Mol. Spectrosc. 134, 113 (1989)
88. J. Y. Seto, R. J. Le Roy, J. Verges, and C. Amiot, J. Chem. Phys. 113, 3067 (2000)
89. R. J. Le Roy, J. Mol. Spectrosc. 194, 189 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊