跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:田宗謨
研究生(外文):Tsung-Mo Tien
論文名稱:聲波通過氣泡幕特性之研究
論文名稱(外文):Sound Propagation through a Bubble Screen at Finite Gas-Volume Fraction
指導教授:黃清哲黃清哲引用關係吳京
指導教授(外文):Ching-Jer HuangJin Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:59
中文關鍵詞:體積分率氣泡流體氣泡幕麥克風反射係數穿透係數
外文關鍵詞:void fractionbubble screenhydrophonebubble liquidtransmission coefficientreflection coefficient
相關次數:
  • 被引用被引用:3
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

本文主要從理論以及實驗方法探討聲波通過氣泡幕衰減之特性,傳統上探討氣泡幕衰減特性主要考慮低體積分率的狀態推導出適用於低體積分率之氣泡幕衰減特性。本文在傳統的低體積分率理論推導外再加入氣泡間交互作用的影響,重新推導出適用於含有任意體積分率氣泡液體之聲波方程式。於求得聲波在氣泡液體的傳播方程式後,再由液體與氣泡幕間需要滿足速度與壓力連續之邊界條件,求出聲波通過氣泡幕時之穿透係數與反射係數。本文的實驗過程,嘗試使用改良過的電子式平行極板進行氣泡體積分率的量測,且由於實驗水槽及聲波發射器的限制,本文探討的頻率範圍為較高頻之聲波(10 kHz~100 kHz)通過氣泡幕之特性。在低體積分率時,本文實驗及理論計算所得聲波通過氣泡幕之穿透係數以及反射係數結果與理論所得一致;在高體積分率時,加入氣泡交互作用影響的理論值與實驗所得結果比較,有不錯的一致性。
ABSTRACT

The attenuation of sound propagating through a bubble screen was investigated both theoretically and experimentally in this study. By adding an additional virtual mass force into the momentum equation of the bubbly liquid, a modified Helmholtz equation valid for the sound propagation in the bubbly liquid at finite gas-volume fraction is reformulated. The transmission and reflection coefficients for the sound propagating through a bubble screen are derived. Experimental study was made to verify the accuracy of the theory. The experimental set-up consists of two parts. The first part is to measure the sound attenuation due to the presence of the bubble screen; while the second part is to measure the gas-volume fraction of the bubbly liquid contained in the screen. The bubble size was justified by taking bubble picture using a CCD camera. In the experiments the sound frequency was restricted to the range from 10 to 100 kHz due to the restriction of the facilities. At low gas-volume fraction, our theoretical results and experimental data coincide with those obtained from the classical theory. At higher gas-volume fraction, our theoretical results agree also with our experimental data very well. However, the transmission coefficients obtained from the classical theory showed a large deviation from the experimental data.
Contents

Chinese Abstract i
Abstract ii
Acknowledgements iii
Contents iv
Figure Caption vi
Notation viii

Chapter 1. Introduction 1
1.1 Foreword 1
1.2 Literature review 2
1.3 Outline of this study 5

Chapter 2. Theoretical Analysis 6
2.1 The continuity equation 6
2.2 Momentum Equation 8
2.3 Bubbly Dynamics 9
2.3.1 Equation of Energy Conservation 10
2.3.2 Linearization of the bubble equation 12
2.3.3 Determination of the phase shift 14
2.4 Decay of the sound waves in the bubbly liquid 16
2.5 The Interaction Between Bubbles 18
2.6 Transmission and Reflection Coefficients 21

Chapter 3. Experimental Set-Up 24
3.1 Measurements of sound attenuation 24
3.2 Measurement of gas volume fraction of the bubbly liquid 26

Chapter 4. Results and Discussions 30
4.1 Environmental noise 30
4.2 The sound speed and decay coefficient in the bubbly liquid 31
4.3 Sound propagation through a bubble screen 32
4.4 Comparison of the theory and the experimental data 33
4.5 Bubble trajectories 35

Chapter 5. Conclusions and Suggestions 36
5.1 Conclusions 36
5.2 Suggestions 37

References 38
Appendix 57
References

1.Biesheuvel, A. and van Wijngaarden, L. (1984) “Two-phase flow equations for a dilute dispersion of gas bubbles in liquid,” J. Fluid Mech., Vol. 148, pp. 301-318.
2.Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. (1985) “Effective equations for wave propagation in bubbly liquids,” J. Fluid Mech., Vol. 153, pp. 259-273.
3.Caflisch, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. (1985) “Wave propagation in bubbly liquids at finite volume fraction,” J. Fluid Mech., Vol. 160, pp. 1-14.
4.Carstensen, E.L., and Foldy, L.L. (1947) “Propagation of sound through a liquid containing bubbles,” J. Acoust. Soc. Am., Vol. 19, pp. 481-501.
5.Commander, K. W. and Prosperetti A. (1989) “Linear pressure waves in bubbly liquids: Comparison between theory and experiments,” J. Acoust. Soc. Am., Vol. 85, pp. 732-746.
6.Feuillade, C. (1996) “The attenuation and dispersion of sound in water containing multiply interacting air bubbles,” J. Acoust. Soc. Am., Vol. 99, pp. 3412-3430.
7.Foldy, L. L. (1945) “The multiple scattering of waves,” Phys. Rev., Vol. 67, pp. 107-119.
8.Fox, F. E., Curley, S. R., and Larson, G. S. (1955) “Phase velocity and absorption measurements in water containing air bubbles,” J. Acoust. Soc. Am., Vol. 27, pp. 534-539.
9.Hartunian, R. A. and Sears, W. R. (1957) “On the instability of small gas bubbles moving uniformly in various liquids,” J. Fulid Mech., Vol. 3, pp. 27-47.
10.Keller, J. B. and Kolodner, I. I. (1956) “Damping of underwater explosion bubble oscillations,” J. Applied Physics, Vol. 27, pp. 1152-1161.
11.Keller, J. B. and Miksis M. (1980) “Bubble oscillations of large amplitude,” J. Acoust. Soc. Am., Vol. 68, pp. 628-633.
12.Lamarre, E. and W. K. Melville (1992). “Instrumentation for the measurement of void fraction in breaking waves: Laboratory and field results. IEEE J. of ocean. Eng. Vol. 17, pp. 204-215.
13.Lai, W.J. (1999) “Study on the attenuation of sound propagating through bubbly liquids at arbitrary gas-volume fraction,” Master Thesis, National Cheng Kung University, Tainan, Taiwan.
14.Lax, M. (1951) “Multiple scattering of waves,” Rev. Modern Phys., Vol. 23, pp. 287-310.
15.Macpherson, J.D. (1957) “The effect of gas bubbles on sound propagation in water,” Proc. Phys. Soc. London Sec. B, Vol. 70, pp. 85-92.
16.Prosperetti, A. (1977) “Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids,” J. Acoust. Soc. Am., Vol. 61, pp. 17-27.
17.Prosperetti, A., Crum, L. A. and Commander, K. W. (1988) “Nonlinear bubble dynamics,” J. Acoust. Soc. Am., Vol. 83, pp. 502-514.
18.Rubinstein, J. (1985) “Bubble interaction effects on waves in bubbly liquids,” J. Acoust. Soc. Am., Vol. 77, pp. 2061-2066.
19.Ruffa, A. A. (1992) “Acoustic wave propagation through periodic bubbly liquids,” J. Acoust. Soc. Am., Vol. 91, pp. 1-11.
20.Saffman, P. G. (1956) “On the rise of small air bubbles in water,” J. Fluid Mech., Vol. 1, pp. 249-275.
21.Silberman, E. (1957) “Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes,” J. Acoust. Soc. Am., Vol. 29, pp. 925-933.
22.Streeter, V. L. (1948) Fluid dynamics, McGraw-Hill, New York, pp. 78-81.
23.Su, M.Y. and Cartmill, J. (1994) “Breaking wave measurement by a void fraction technique,” Proceed. 2nd Int. Symp. Ocean Wave Measurement and Analysis, pp. 951-962.
24.Su, M.Y. and Wesson, J.C. (2001) “Bubble Measurement Techniques and Bubble Dynamics in Coastal Shallow Water,” Advances in Coastal and Ocean Engineering, Vol. 7, pp. 77-124, World Scientific, Singapore.
25.Su, M.Y., J.C. Wesson, Burge, R. and W. J. Teague (1999) “Temporal variation of bubble void fraction in the littoral zone. Submitted to J. Geophys. Res., Aug., 1999.
26.Twersky, V. (1962) “On scattering of waves by random distributions. I. Free-surfeace scatterer formalism,” J. Math. Phys., Vol. 3, pp. 700-715.
27.Twersky, V. (1964) “Acoustic bulk parameters of random volume distributions of small scatterers,” J. Acoust. Soc. Am., Vol. 36, pp. 1314-1329.
28.Twersky, V. (1978) “Acoustic bulk parameters in distributions of pair-correlated scatterers,” J. Acoust. Soc. Am., Vol. 64, pp. 1710-1719.
29.Van Wijngaarden, L. (1968) “On the equations of motion for mixtures of liquid and gas bubbles,” J. Fluid Mech., Vol. 33, pp. 465-474.
30.Van Wijngaarden, L. (1972) “One-dimensional flow of liquids containing small gas bubbles,” Ann. Rev. Fluid Mech., Vol. 4, pp. 369-396.
31.Van Wijngaarden, L. (1976) “Hydrodynamic interaction between gas bubbles in liquid,” J. Fluid Mech., Vol. 77, pp. 27-44.
32.Van Wijngaarden, L. (1982) “Bubble interactions in liquid/gas flows,” Appl. Sci. Res., Vol. 38, pp. 331-339.
33.Waterman, P.C. and Truell, R. (1961) “Multiple scattering of waves,” J. Math. Phys., Vol. 2, pp. 512-537.
34.Wu, J. (2001) “Production Functions of Film Drops by Bursting Bubbles,” J. Phys. Oceanography, Vol. 31, pp. 3249-3257.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top