跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄧秋霞
研究生(外文):Chu-Hsya Dan
論文名稱:以緩坡方程式模擬不規則波之變形
論文名稱(外文):Simulation of Irregular Waves by Mild-Slope Equation
指導教授:許泰文許泰文引用關係
指導教授(外文):Tai-Wen Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:58
中文關鍵詞:緩坡方程式非線性三波交互作用波譜分割法不規則波
外文關鍵詞:triad interactionnonlinearirregular wavesspectral methodmild-slope equation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文應用緩坡方程式模擬不規則波之變形,對於不規則波之處理採用波譜分割法,並以能量通率之觀點在緩坡方程式中加入能量消散係數,處理非線性淺化效應、碎波效應及非線性波波交互作用,據此建立一數值模式模擬波浪通過不規則地形時之波高、週期與波譜形狀之變化。模式計算結果經與不規則波之試驗結果比較後得知:波高模擬方面,本文計算結果與試驗結果呈現合理之一致性;波譜變形方面,本文因考慮非線性波波交互作用,故模式能改善未考慮非線性交互作用時對於波譜主頻能量高估之情形,且在非線性參數 Ur 介於 0< Ur <100 之範圍時,模式計算所得之波譜與實測波譜呈現良好之一致性。而在 Ur >100 時,本文模式有低估波譜能量往高頻區轉移之情形,因此對於波譜高頻區之形狀模擬能力較低。
In this paper, a numerical model based on mild-slope equation is constructed to simulate transformation of irregular waves. First, we apply spectral method to separate the significant wave spectrum into several component waves, and add the energy coefficient into the governing equation in terms of energy flux to deal with nonlinear shoaling、wave breaking and wave-wave interaction. The validity of the present model is verified through comparisons with experimental data. For simulation of wave height, the present model shows reasonable results with measured data. And for transformation of wave spectrum, the present model improves the overestimation of energy in peak frequency when wave-wave interaction is included. Comparisons of measured data and numerical results indicates that the present model has good ability for simulation of spectrum shape when 0< Ur <100 . But when
Ur >100, the present model underestimates the energy transferring to higher frequency of spectrum.
中文摘要 I
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅵ
符號說明 Ⅷ
第一章 序論 1
1-1 研究動機與目的 1
1-2 前人研究 2
1-3 本文組織 4
第二章 緩坡方程式 6
2-1 橢圓型緩坡方程式 6
2-2 雙曲線型緩坡方程式 9
2-3 演進型緩坡方程式 9
2-4 各類型緩坡方程式之比較 10
第三章 不規則波緩坡方程式 11
3-1 控制方程式 11
3-2 能量消散係數 12
3-3 邊界條件與起始條件 16
第四章 數值方法和波譜分割 20
4-1 數值方法 20
4-2 收斂條件 21
4-3 波譜分割與合成 22
第五章 結果與討論 24
5-1 模式驗證 24
5-2 實例計算 29

第六章 結論與建議 52
6-1 結論 52
6-2 建議 53
參考文獻 54
1.Arcilla, A. S., J.A. Roelvink, B.A. O’Connor, A.J.H.M. Reniers, and J.A. Jimenez, The Delta flume, “93 experiment, Proc. Coastal Dynamics Conf.,’’ Barcelona, Spain, pp. 488-502 (1994).
2.Armstrong, J.A., N. Bloembergen, J. Ducuing and P.S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Physical Review, Vol. 127, pp. 1918-1939 (1962).
3.Battjes, J.A. and J.P.F.M. Janssen, “Energy Loss and Set-up due to Breaking of Random Waves,” Proceedings of 16th International Conference on Coastal Engineering, ASCE, Hamburg, pp. 569-587 (1978).
4.Beji, S., and J. A. Battjes, “Experimental Investigation of Wave Propagation over a Bar,’’ Coastal Engineering, Vol. 19, pp. 151-162 (1993).
5.Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction,” Proceedings of 13th International Conference on Coastal Engineering, ASCE, Canada, pp. 471-490 (1972).
6.Black, K.P. and M.A. Rosenberg, “Semi-Empirical Treatment of Wave Transformation Outside and Inside the Breaking Line,” Coastal Engineering, Vol. 16, pp. 313-345 (1992).
7.Booij, N., “Gravity Waves on Waver With Non-Uniform Depth and Current,” Rep. No. 81-1, Dept. Civil Engrg., Delft Univ. of Tech., Delft, The Netherlands (1981).
8.Bretherton, F.P., “Resonant Interactions between Waves: The Case of Discrete Oscillations,” Journal of Fluid Mechanics, Vol. 20, pp. 457-480 (1964).
9.Bretschneider , C. L., ‘‘Significant Waves and Wave Spectrum,’’ Ocean Industry, pp. 40-46 (1968).
10.Eldeberky, Y., Nonlinear Transformation of Wave Spectra in the Nearshore Zone, Ph.D. thesis, Department of Civil Engineering, Delft University of Technology, The Netherlands (1996).
11.Eldeberky, Y. and J.A. Battjes, “Parameterization of Triad Interactions in Wave Energy Models,” Proceedings of Coastal Dynamics Conference ’95, Gdansk, Poland, pp. 140-148 (1995).
12.Elgar, S., M.H. Freilich and R.T. Guza, “Model-data Comparisons of Moments of Nonbreaking Shoaling Surface Gravity Waves,” Journal of Geophysical Research, Vol. 95, pp. 16055-16063 (1990).
13.Elgar, S., R.T. Guza and M.H. Freilich, “Observations of Nonlinear Interactions in Directionally Spread Shoaling Surface Gravity Waves,” Journal of Geophysical Research, Vol. 98, pp. 20299-20305 (1993).
14.Elgar, S., T.H.C. Herbers, V. Chandran and R.T. Guza, “Higher-order Spectral Analysis of Nonlinear Ocean Surface Gravity Waves,” Journal of Geophysical Research, Vol. 100, pp. 4997-4983 (1995).
15.Goda, Y. and K. Nagai, ‘‘Report of the Port and Harbour,’’ Res. Inst., No. 61, pp.64 (1968)
16.Goda, Y., “Random Seas and Design of Maritime Structures,” University of Tokyo Press, 323pp. (1985).
17.Hsu, T.W. and Wen, C.C., “On Radiation Boundary Conditions and Wave Transformation Across Surf Zone,” China Ocean Engineering, Vol. 15, pp. 405-416 (2001a).
18.Hsu, T.W. and Wen, C.C., “A Parabolic Equation Extended to Account for Rapidly Varying Topography,” Ocean Engineering, Vol. 28, pp. 1479-1498 (2001b).
19.Isobe, M., “A Parabolic Equation Model for Transformation of Irregular Waves due to Refraction, Diffraction and Breaking,” Coastal Engineering in Japan, Vol. 30, pp. 33-47 (1987).
20.Isobe, M., Y. Shibata, T. Izumiya, and A. Watanabe, “Set-up Due to Irregular Waves on a Reef,” 第 35 回海岸工學講演會論文集, pp. 192-196 (1988). (In Janpanese)
21.Izumiya, T. and M. Endo, “Wave Reflection and Transmission Due to a Submerged Breakwater,” 第 36 回海岸工學講演會論文集, pp. 638-642 (1989). (In Janpanese)
22.Kubo, Y., Y. Kotake, M. Isobe, and A. Watanabe, “ Time dependent Mild Slope Equation for Random Waves,” Proceedings of 23th International Conference on Coastal Engineering, ASCE, pp. 419-431 (1992).
23.Li, B., “An Evolution Equation for Water Waves,” Coastal Engineering, Vol. 23, pp. 227-242 (1994a).
24.Li, B., “A Generalized Conjugate Gradient Model for the Mild Slope Equation,” Coastal Engineering, Vol. 23, pp. 215-225 (1994b).
25.Li, B., D.E. Reeve, C.A. Fleming, “Numerical Solution of the Elliptic Mild-Slope Equation for Irregular Wave Propagation,” Coastal Engineering, Vol. 20, pp. 85-100 (1993).
26.Longuet-Higgins, M. S., “On the Statistical Distributions of the Height of Sea Waves,” Jour. Marine Res., Vol. IX, No. C5, pp. 245-266 (1952).
27.Luth, H.R., G. Klopman, and N. Kitou, ‘‘Kinematics of Waves Breaking Partially on an Offshore Bar,’’ Rep. H1573, 13 pp., Delft Hydraulics, Delft, Netherlands (1993).
28.Madsen, P.A. and O.R. Sørensen, “Bound Waves and Triad Interactions in Shallow Water,” Ocean Engineering, Vol. 20, No. 4, pp. 359-388 (1993).
29.Mase, H. and Y. Iwagaki, “Wave Height Distribution and Wave Grouping in the Surf Zone,” Proceedings of 18th International Conference on Coastal Engineering, ASCE, pp. 58-76 (1982).
30.McCowan, J., “On the Highest Wave of Permanent Type,” Philos. Mag. Edinburgh, 38(5), pp. 351-358 (1894).
31.Mei, C.C., “Applied Dynamics of Ocean Surface Wave,” John Wiley and Sons, New York, pp. 86-88 (1983).
32.Nagai, K., “Computation of Refraction and Diffraction of Irregular Sea,” Rep. of the Port and Harbor Res. Inst., Vol. 11, No. 2, pp. 47-119, June (1972).
33.Nagayama, S., “Study on the change of wave height and energy in the surf zone.” B. Eng. thesis, Yokohama National University, Japan. (In Japanese) (1983).
34.Phillips, O.M., “On the Dynamics of Unsteady Gravity Waves of Finite Amplitude, Part 1,” Journal of Fluid Mechanics, Vol. 9, pp. 193-217 (1960).
35.Radder, A.C., “On the Parabolic Equation Method for Water Wave Propagation,” Journal of Fluid Mechanics, Vol. 95, No. 1, pp. 159-176 (1979).
36.Rojanakamthorn, S., M. Isobe, and A. Watanabe, “A Mathematical Model of Wave Transformation Over a Submerged Breakwater,” Coastal Engineering in Janpan, Vol. 32, No. 2, pp. 209-234 (1989).
37.Rojanakamthorn, S., M. Isobe, and A. Watanabe, “Modeling of Wave Transformation on Submerged Breakwater,” Proceedings of 22th International Conference on Coastal Engineering, ASCE, pp. 1060-1073 (1990).
38.Shuto, N., “Nonlinear Long Waves in a Channel of Variable Section,” Coastal Engineering in Japan, Vol. 17, pp. 1-12 (1974).
39.Sommerfeld, A., “Mechanics of Deformable Bodies,” Vol. 2 of Lectures on Theoretical Physics, Academic Press, New York (1964).
40.Tang, F.L.W. and Lin, C.F., “Practical Method for Evaluation Directional Spectra After Shoaling and Refraction,” Proc. 20th Conf. Eng., pp. 780-793 (1986). (In Taipei)
41.Tsai, C.P., Chen, H.B. and Hsu, H.T., “Estimation of Wave Height Deformation in Surf Zone,” Journal of Harbor Technology, Vol. 10, No. 1, pp. 93-111 (1995). (In Chinese)
42.Tsai, C.P., Chen, H.B. and Hsu, R.C., “Calculations of Wave Transformation Across the Surf Zone,” Ocean Engineering, Vol. 28, No. 8, pp 941-955 (2001).
43.Watanabe, A. and M. Dibajnia, “A Numerical Model of Wave Deformation in Surf Zone,” Proceedings of 21th International Conference on Coastal Engineering, ASCE, Malaga, Spain, pp. 578-587 (1988).
44.林朝福,簡榮生,「波譜分割在淺海波譜變形之應用」,第十三屆海洋工程研討會論文集,台北,pp. 85-103 (1991)。
45.許朝敏,「不規則波與流共存時緩坡波動方程式之探討」,國立台灣大學造船及海洋工程學研究所論文 (1993)。
46.歐文松,「小波轉換於分析淺化波浪特性之應用」,國立成功大學水利及海洋工程研究所論文 (1995)。
47.廖哲民,「應用能譜觀念由緩坡方程式求解斜坡上波場變形之計算方法」,國立成功大學水利及海洋工程研究所論文 (1996)。
48.廖建明,「波浪通過潛堤後之特性研究」,國立成功大學水利及海洋工程研究所論文 (1996)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top