跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭啟文
研究生(外文):Chi-Wen Kuo
論文名稱:泥漿體及礫石泥漿體之流變特性
論文名稱(外文):Rheological Properties of Mud Slurries and Grained-Mud Slurries
指導教授:詹錢登詹錢登引用關係
指導教授(外文):Chyan-Deng Jan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系碩博士班
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:53
中文關鍵詞:流變特性漿體時變性
外文關鍵詞:Rheological propertiesTime-dependentSlurry
相關次數:
  • 被引用被引用:10
  • 點閱點閱:344
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
  本文使用Brookfield DV-III型流變計量測研究泥漿體及礫石泥漿體之流變特性及其隨受剪時間之變化。泥漿體是由粒徑小於0.5mm之細泥與水混合而成,其含砂濃度(固態物質之體積濃度)介於30%至50%之間。礫石泥漿體是由礫石加入泥漿體均勻混合而成,其固態物質(細泥及礫石)之濃度介於40%至45%之間,而礫石粒徑介於1.7∼2.36 mm。實驗量測結果顯示,泥漿體及礫石泥漿體,在固定剪切率下,其剪應力隨受剪時間之變化大致上可區分為三個區域:應力遽增區、應力鬆弛區及應力穩定區。應力遽增區的時間範圍非常窄(約在2秒以內),本文主要分析應力鬆弛區與應力穩定區之流變特性。在固定剪切率下,剪應力隨受剪時間增加而逐漸減少的現象稱為應力鬆弛現象,而描述此現象之變化曲線稱為應力鬆弛曲線,此應力鬆弛曲線大致上可用韓文亮(1991)所建議之應力鬆弛模式來描述,此模式包含賓漢屈服應力( )、賓漢黏滯度( )及與時變性有關之三個參數(A、B及K2)等共五個參數,本文探討這些參數受到漿體含砂濃度、剪切率與礫石含量的影響。
  實驗結果顯示 及 隨著漿體含砂濃度之增加而有增加之趨勢。在相同體積濃度( )下,礫石泥漿體的 小於泥漿體之 ,但礫石泥漿體的 大致上與泥漿體之 相同。應力鬆弛模式中與時變性有關之參數(A、B及K2),也會受到漿體含砂濃度、剪切率與礫石含量的影響。參數K2會隨著剪切率之增加而逐漸減小,含砂濃度( )為30%之泥漿體與礫石泥漿體( 、 )之參數A大抵上隨著剪切率之增加而遞增,但參數B則會因剪切率增加而遞減。然而,較高濃度之泥漿體與礫石泥漿體,其參數A及B與剪切率之間無明顯之變化趨勢,其原因有待進一步探討。
  Rheological properties of mud and grained-mud slurries were measured by a Brookfield DV-III rheometer under various shear rates and shearing time. The mud slurries were formed by mixing taped water with fine sediments having diameters less than 0.5 mm and mean diameter 0.004 mm. The grained-mud slurries were formed by mixing a mud slurry with gravels having diameters between 1.7 and 2.36 mm. Five mud slurries were tested and their corresponding fine sediment concentrations ( ) were 30%, 35%, 40%, 45% and 50%, respectively. Two grained-mud slurries were tested and their corresponding total sediment concentrations ( ) were 40% and 45%, respectively. The results shows that, for a specific shear rate, the relationship of the stress and shearing time could be divided into three regions: stress rapidly-increasing region, stress gradually-decreasing (slack) region and stress equilibrium region. The phenomenon of stress gradually decreases with the increase of shearing time at a constant applied shear rate is named as stress slack. The stress rapidly-increasing region is very narrow and is not investigated in the present paper. Rheological properties of mud and grained-mud slurries in the stress slack region and the stress equilibrium region are measured and analyzed in the paper. The results show that the stress slack curve could be well described by the Han’s stress slack model (1991). The model includes five parameters: Bingham yield stress ( ), Bingham viscosity ( ), and other three shearing-time-dependent parameters (A, B and K2). The dependence of the five parameters on shear rate, sediment concentration and gravel content in slurries are discussed.
  The results show that both and increased with the increase of sediment concentration. Under the same solid concentration, the value of of grained-mud slurries was larger than that of mud slurries, but their -value have not significant differences. The three shearing-time-dependent parameters (A, B and K2) of the stress slack model also depended on slurry concentration, shear rate and gravel content in slurries. Parameter K2 decreased with the increase of shear rate. The values of A for fine sediment concentrations ( ) and for grained-mud slurries concentration ( ; ) increased with the increase of shear rate, but parameter B decreased with the increase of shear rate. However, the dependence of A and B for the rest of slurries in the present study on the shear rate seemed unobvious.
中文摘要 I
英文摘要 II
謝誌 IV
目錄 V
圖目錄 VIII
表目錄 XI
符號表 XII

第一章 緒論 1
1.1 研究動機 1
1.2 本文研究方法 2
第二章 流變特性及流變模式 3
2.1 流變特性的機理及其影響因素 3
2.1.1 水體的化學性質 3
2.1.2 泥沙的條件 3
2.2 泥漿體在土石流中之力學作用 4
2.2.1 絮凝作用 5
2.3 土石流體之流變特性 5
2.3.1 時變性流變模式 6
2.3.2 非時變性流變模式 8
(a)牛頓流體模式 8
(b)賓漢流體模式 8
(c)冪定理模式 9
(d)屈服冪定理模式 9
2.4 不沈粒徑 10
第三章 實驗設備與方法 12
3.1 泥漿體與礫石泥漿體 12
3.2 流變量測儀器 14
3.3 流變計校正 16
3.4 剪切率、剪應力計算方法 16
3.5 實驗步驟流程 17
第四章 實驗結果與分析 19
4.1 剪應力震盪現象 19
4.2 應力鬆弛曲線 21
4.3 漿體含砂濃度對流變特性之影響 24
4.4 漿體組成對流變特性之影響 25
4.5 應力鬆弛曲線之參數分析 26
4.6 漿體含砂濃度、漿體組成與剪切率對應力鬆弛曲線之影響 27
第五章 結論與建議 49
5.1 結論 49
5.2 建議 50

參考文獻 52
附錄A 泥漿體與礫石泥漿體之剪應力與受剪時間關係曲線
A-1
附錄B 實驗數據 B-1
1.王志賢(2000),「粗顆粒材料對土石流體流變特性影響之實驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
2.王裕宜、詹錢登、嚴璧玉(2001),「泥石流體結構和流變特性」,湖南科學技術出版社。
3.余昌益(1997),「高含砂水流流變參數之實驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
4.沙玉清(1996),「泥沙運動學引論」,陝西科學技術出版社。
5.沈壽長(1998a),「泥石流流變特性的試驗研究」,水利學報,第9期,第7∼13頁。
6.沈壽長(1998b),「泥石流應力本構關係」,水利學報,第12期,第16∼22頁。
7.陳弘殷(1998),「阿公店水庫淤泥之流變特性」,國立成功大學水利及海洋工程研究所碩士論文。
8.詹錢登(2000),「土石流概論」,科技圖書股份有限公司。
9.費祥俊、朱程清(1991),「高含砂水流運動中的賓漢切應力」,泥沙研究,第4期,第13∼23頁。
10.費祥俊(1994),「漿體與粒狀物料輸送水力學」,清華大學出版社,北京。
11.錢寧、萬兆惠(1983),「泥砂運動力學」,科學出版社,北京。
12.韓文亮(1991),「細顆粒漿體的應力鬆弛模型」,泥砂研究,第3期,第87-92頁。
13.Bagnold, R. A.(1954), “Experiments on a gravity-free dispersion of large solid sphers in a Newtonian fluid under shear,” Proc. of the Royal Society of London, A255, pp. 49-63.
14.Cheng, C. H.(1973), “D. A. Differential Form of Constitutive Relation for Thixotropy,” Rheol. Acta, Vol.12 pp. 228.
15.Dai, J., et al.(1980), “An experimental study of slurry transport in pipes,” Proc., Int. Symposium on River Sedimentation, pp. 195-204.
16.Perret, D., Locat, J. and Martignoni, P.(1996), “Thixotropic behavior during shear of a fine-grained mud from Eastern Canada,” Engineering Geology Vol. 43 pp. 31-44.
17.Kang, Z., and Zhang, S.(1980), “A preliminary analysis of the characteristics of debris flow,” Proc., Int. Symposium on River Sedimentation, Beijing, China, pp. 213-220(in Chinese).
18.Major, J. J., and Pierson, T. C.(1992), “Debris Flow Rheology: Experimental Analysis of Fine-Grained Slurries,” Water Resources Research, Vol.28, No. 3, pp. 841-857.
19.O’Brien, J. S., and Julien, P. Y.(1988), “Laboratory Analysis of Mudflow Properities,” Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 8, pp. 877-887
20.Contreras, S. M. and Davies, T. R. H.(2000), “Coarse-Grained Debris-Flows: Hysteresis and Time-Dependent Rheology,” Journal of Hydraulic Engineering, Vol. 126, No. 12, pp. 938-941.
21.Savage, S. B. and McKeown, S.(1983), “Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders,” J. Fluid Mech., Vol 127, pp. 453-472.
22.Savage, S. B. and Sayed, M.(1984), “Stresses developed by dry cohesionless granular materials sheared in an annular shear cell,” J. Fluid Mech ., Vol. 142, pp. 391-430.
23.Van Kessel Thijs and Blom, C.(1998), “Rhoelogy of cohesive sediments: comparison between a natural and an artifical mud,” Journal of Hydraulic Research, Vol. 36, No. 4, pp. 591-612.
24.Wang, Z., Larsen P., and Xiang, W.(1994), “Rheological Properties of Sediment Suspensions and Their Implication,” Journal of Hydraulic Research, IAHR, Vol. 32, No. 4 pp. 495-516.
25.Wang, Y., JAN C. D., Li, C. and Han W.(2001), “Rheological Properties of Viscous Debris Flows in the Jiangia Ravine, Yunnan, China, “International Journal of Sediment Research, Vol. 16 No. 2, 2001, pp. 326-332.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊