跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳嫈嫈
研究生(外文):Ying-Ying Chen
論文名稱:人類Y染色體雙核甘酸重複序列之分佈及頻率及其與21、22條染色體之比較
論文名稱(外文):Distribution and frequency of dinucleotide repeats in human chromosome Y and comparison with chromosomes 21, 22.
指導教授:陳啟清陳啟清引用關係
指導教授(外文):Chin-Ching Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:89
中文關鍵詞:雙核甘酸重複序列人類Y 染色體
外文關鍵詞:human chromosome Ydinucleotide repeats
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
微衛星DNA在多細胞生物的染色體均被發現。微衛星DNA(microsatellie DNA),亦被稱為簡單重覆序列(simple tandem repeats)。重複單元長度1~6 bp,重複次數約5∼100次。隨機散佈於基因組中,也常聚集於轉錄區。人類Y染色體上有六千萬個鹼基配對,其中大部分是無用的重複性序列,具有功能的基因不多。迄今,尚未有學者針對Y染色體雙核甘酸重複序列的分布、出現頻率進行詳盡分析與探討。
本研究經由GCG程式套組協助,搜索Genbank中人類Y染色體之DNA序列,將此染色體之雙核甘酸重複序列進行分析,探討此染色體雙核甘酸重複序列之出現頻率、分佈情況、滑脫率、覆蓋率及分佈之距離。結果顯示,Y染色體雙核甘酸重複序列之總出現頻率可明顯分為三群AA、TT、AT出現頻率頻繁,歸納為第一群,約19%∼24%;AC、AG、TC、TG出現頻率次之,約6%∼9%,歸為第二群;CG、CC、GG出現頻率最少,小於1%。藉由馬可夫鏈模式推算雙核甘酸重複序列之滑脫率,依次為TG>AC>AT>TC>TT>AG >AA>CG>GG>CC。分析雙核甘酸重複序列之相對距離方面,也可分為三類,第一類:AA、TT、TC、TG(最遠相對距離可至200 kb);第二類:AC、AG、AT(最遠相對距離可至200 kb∼300 kb);第三類則為CC、GG、CG(最遠相對距離至可4000 kb)。與第21、22對染色體比較,發現雙核甘酸重複序列之出現頻率、分佈情況、滑脫率及覆蓋率之分析,在三對染色體之結果皆很相似。經由分析,發現此三對染色體雙核甘酸重複序列在出現頻率、分佈具有一定程度之特定性及規律性。希望此三對染色體雙核甘酸重複序列之初步研究,將有助於後來研究者對雙核甘酸重複序列做更深入的探討。
Microsatellites are simple tandem repeats that consist of multiple copies of a tract with one to six nucleotides per repeating unit. They are widely dispersed in the genome and known to relate to some genetic diseases. Polymorphic Y-chromosome-specific microsatellites are becoming increasingly used in evolutionary and forensic studies. By using the Genetics Computing Group software, we examined the distribution of dinucleotide repeats in human chromosome Y. The frequencies of dinucleotide repeats in human chromosome Y could be divided into three groups with AA/TT/AT, AC/AG/TC/TG, and CG. The maximum lengths of dinucleotide repeats are significantly different in chromosome Y. The coverage of dinucleotide repeats unit AT (0.238%) was the most abundance, AC/AG/TC/TG was the second, and CG was the less. According to the maximum distance between each dinucleotide repeat in human chromosome Y, we could group the dinucleotide repeats into three types as AA/TT/TC/TG(200Kb), AC/AG/AT(200Kb∼300Kb), CC/GG/CG(4000kb). We used the Markov chain model to compute the slippage rate of dinucleotide repeats in the different repeats. The results indicated that dinucleotide slippage rate of TG (1×10-6) was higher than both AG/TC/ AT(1×10-7), and CG(1×10-8). The total average slippage rate was 1×10-7 in chromosome Y. In addition, we compare the frequency, the maximum length, the slippage rate, the coverage and the distance of dinucleotide repeats in human chromosome Y, 21 and 22. The partterns of each event were similar in chromosome Y, 21 and 22. Based on the results of the frequency, the length, the slippage rate, the coverage and the distance of dinucleotide repeats, human chromosome Y shared similar characteristics with human chromosome 21 and 22.
中文摘要...01
英文摘要...03
目錄...06
表目錄...09
圖目錄...10
第一篇文獻探討...16
第一章重複序列...16
第二章微衛星DNA...18
第三章微衛星DNA之不穩定現象...18
第四章微衛星DNA應用...21
第五章雙核甘酸重複序列...21
第二篇人類染色體...23
第一章人類Y染色體...23
第二章人類第21對染色體...24
第三章人類第22 對染色體...25
第三篇人類基因組分析計畫...27
第一章人類基因組...27
第二章基因組與生物資...27
第四篇研究目的...29
第五篇材料與方法...30
第一章材料...30
第二章分析Y 染色體雙核甘酸重複序列之研究方法與步驟...30
第三章估算Y 染色體雙核甘酸重複序列滑脫率之研究方法...33
第六篇Y染色體雙核甘酸重複序列分析結果...35
第一章Y染色體雙核甘酸重複序列之出現頻率...35
第二章人類Y染色體之滑脫率及最佳分佈模式...35
第三章人類Y 染色體雙核甘酸重複序列之覆蓋率...37
第四章Y 染色體雙核甘酸重複序列之間距離...37
第七篇比較人類Y、第21 及22 對染色體雙核甘酸重複序列之分析結果...38
第一章比較Y、第21 及22 對雙核甘酸重複序列之出現頻率...38
第二章比較Y、第21 及22 對雙核甘酸重複序列之滑脫率及最佳模式...39
第三章比較Y、第21 及22 對雙核甘酸重複序列之覆...39
第四章比較Y、第21 及22 對雙核甘酸重複序列之相對距離...40
第八篇討論...41
第九篇結論...44
參考文獻...75
附錄
Aaltonen LA. Peltomaki P., Leach FS. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260:812-816, 1993.
Bai YQ,. Akiyama Y., Nagasaki H. et al. Predominant germ-line mutation of the hMSH2 gene in Japanese hereditary nonpolyposis colorectal cancer kindreds. Int J Cancer 82:512-515, 1999.
Baxevanis AD. Information retrieval from biological databases. Methods of Biochemical Analysis. 39:98-120, 1998.
Benitez J., Osorio A., Barroso A. et al. A region of allelic imbalance in 1q31-32 in primary breast cancer coincides with a recombination hot spot. Cancer Research 57(19): 4217-20, 1997.
Benson DA., Boguski M., Lipman DJ., and Ostell J. GenBank. Nucleic Acids Research 22(17) 3441-3444, 1994.
Bosch A., Wiemann S., Guimera J., Ansorge W., Patterson D., and Estivill X. Five new microsatellite polymorphisms at the q21 region of human chromosome. Human Genetics 95(1): 119-22, 1995.
Britten RJ., Kohne DE. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161 (841): 529-40, 1968.
Campuzano V. Montermini L. Molto MD. Pianese L. Cossee M. Cavalcanti F. Monros E. Rodius F. Duclos F. Monticelli A. et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254): 1423-7, 1996
Casky CT., Pizzuti A., Fu YH., Fenwick Jr RG. and Nelson DL. Triplet repeats mutations in human disease. Science 256: 784-789,1992.
Chen WH,. Chen CC. Distribution and frequency of dinucleotide repeats in human chromosome 22. Institute of Biology, National Cheng Kung University, Tainan, Taiwan. 2000.
Chen TL., Manuelidis L. SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 98(5): 309-16, 1989.
Chen WH., Chen II. and Chen CC. Comparison of dinucleotide repeats in DSCR and non-DSCR genomes of human chromosome 21. Mid Taiwan J Med. 5 (2): 109-14, 2000.
Collins FS., Patrinos A., Jordan E., Chakravarti A., Gesteland R., and Walters L. New goals for the U.S. human genome project. Science 282: 682-9,1998.
David Baltimore. Our genome unveiled. Nature 409: 814-816, 2001.
Deka,R., Shriver MD., Yu LM. Jin L., Aston CE., Chakraborty R., Ferrell RE. Conservation of human chromosome 13 polymor -phic microsatellite (CA) n repeats in chimpanzees. Genomics 22(1): 226-30, 1994.
Dillon EK., Deboer WB., Papadimitriou JM., Turbett GR. Microsatellite instability and loss of heterozygosity in mammary carcinoma and its probable precursors. British Journal of Cancer 76(2): 156-62, 1997.
Doolittle RF. Some reflections on the early days of sequence searching. Journal of Molecular Medicine 75: 239-41,1997.
Dunham I. Shimizu N. Roe BA. et al. The DNA sequence of human chromosome 22. Nature 402(6761): 489-495, 1999.
Dutreix M. (GT) n repetitive tracts affect several stages of RecA-promoted recombination. Journal of Molecular Biology 273: 105-113,1997.
Epplen JT., Buitkamp J. Bocker T., Epplen C. Indirect gene diagnoses for complex (multifactorial) diseases. Gene 159(1): 49-55, 1995.
Filipski J., Leblanc J., Youdale T., Sikorska M., Walker PR. Periodicity of DNA folding in higher order chromatin structures. EMBO Journal 9(4): 1319-27, 1990.
Gilks WR., Richardson S. and Spiegelhalter DJ. Markov Chain Monte Carlo in Practice. Chapman & Hall. 1996.
Hamada, M. et al,. A newly isolated family of short interspersed Repetitive elements (SINEs) in Coregonid fishes (Whitefish) with sequences that are almost identical to those of the SmaI family of repeats: Possible evidence for the horizontal transfer of SINEs. Genetic. 146: 355-367, 1997.
Hammer MF., Spurdle AB., Karafet T., Bonner MR., Wood ET., Novelletto A., Malaspina P., Mitchell RJ., Horai S., Jenkins T., and Zegura SL. The geographic distribution of human Y chromosome variation. Genetics 145:787-805 1997.
Handerson E., Hardin CC., Walk SK., Tinoco Jr I. and Blackburn EH. Telomeric DNA oligonucleotide form novel intramolecular structures containing guanine.guanine base pairs. Cell 51: 899-908,1987.
Hino O., Testa JR., Buetow KH., Taguchi T., Zhou JY., Bremer M., Bruzel A. Yeung R., Levan G., Levan KK. et al. Universal mapping probes and the origin of human chromosome 3. PNAS 90(2): 730-4, 1993.
Hsu CM., Chen WH., Chen II. and Chen CC. Differential distribution of dinucleotide repeats length and frequency in human chromosome 21. TZU-CHI Med J. 2000.
Iordanis I., Arzimanoglou1, Fred Gilbert, Hugh RK., Barber. Microsatellite instability in human solid tumors. Cancer 82: 1808-1820,1998.
Jeffreys AJ., Wilson V. and Thein SL. Hypervariable ‘minisatellit -e’ region in human DNA. Nature 314(7): 67-73,1985.
Jelinek WR., Toomey TP., Leinwand L. et al. Ubiquitous, interspersed repeated sequences in mammalian genomes. PNAS 77(3): 1398-402, 1980.
Jobling, M.A., Heyer, E., Dieltjes, P. and de Knijff, P. Y-chromosome- specific microsatellite mutation rates re-examined using a minisatellite, MSY1. Hum. Mol. Genet. 8: 2117-20, 1999.
Jorde LB., Rogers AR., Bamshad M., Watkins WS., Krakowiak P., Sung S., Kere J. and Harpending HC. Microsatellite diversity and the demographic history of modern humans. PNAS 94:3100-3103, 1997.
Kashi, Y., King, D. and Soller, M. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics 13:74-78, 1997.
Kalpazidou. S.L. Cycle Representations of Markov Processes. Springer-Verlag. 1994.
Korenberg JR., Rykowski MC. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53(3): 391-400, 1988.
Kruglyak S. Durrett RT., Schug MD., Aquadro CF. Equilibrium distributions of microsatellite repeats length resulting from a balance between slippage events and point mutations. PNAS 95(18): 10774-8, 1998.
Kunzler, P., Matsuo, K. and Schaffner, W. Pathological, physiologic and evolutionary aspects of short unstable DNA repeat in human genome. Biological Chemistry Hoppe Seyler 376:201-211, 1995.
Kushida Y, Miki H, Ohmori M. Loss of heterozygosity in actinic keratosis, squamous cell carcinoma and sun-exposed normal-appearing skin in Japanese: difference between Japanese and Caucasians. Cancer Letters 140(1-2): 169-75, 1999.
Laura O., Domenico P., Mario F. et al. Microsatellite instability in gastric cancer is associated with tumor location and family history in a high-risk population from tuscany. Cancer Research 57: 4523-4529, 1997.
Li WH. Molecular Evolution. Sinauer, Sunderland, MA. 1997.
Mitas M. Trinucleotide repeats associated with human disease. Nucleic Acid Research 25: 2245~2253,1997.
Nowak R. Mining treasures from 'junk DNA'. Science 263(5147): 608-610, 1994.
Orgel LE., Crick FH., Sapienza C. Selfish DNA. Nature 288(5792): 645-646, 1980.
Ornstein, R.L., Rein, R., Breen, D.L. and Macelroy, R.D. An potential function for the calculation of nucleic acid interaction engeries: I, Base stacking. Biopolymers 17: 2341-2360, 1978.
Patience, C. et al. Our retroviral heritage. TIG. 13: 116–120, 1997.
Peltomaki P., Lothe RA., Aaltonen LA. et al. Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Research. 53(24): 5853-5855, 1993.
Peris K., Onorati MT., Keller G., et al. Widespread microsatellite instability in sebaceous tumours of patients with the Muir-Torre syndrome. British Journal of Dermatology 137(3): 356-360, 1997.
Petes TD., Fink GR. Gene conversion between repeated genes. Nature 300(5889): 216-217, 1982.
Petes TD., Greenwell PW., and Dominska M. Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae. Genetics 146: 491-498,1997.
Pietrokovsky S., Bottazzi V., Schweigmann N., Haedo A., Wisnivesky-Colli C. Comparison of the blood meal size among Triatoma infestans, T. guasayana and T. sordida (Hemiptera: Reduviidae) of Argentina under laboratory conditions. Memorias do Instituto Oswaldo Cruz. 91(2): 241-242, 1996.
Ramel C. Mini- and microsatellites. Environmental Health Perspe -ctives 4:781-789, 1997.
Rithidech KN., Dunn JJ., Gordon CR. Combining multiplex and touchdown PCR to screen murine microsatellite polymorphis -ms. Biotechniques 23(1): 36, 40, 42, 44, 1997.
Rosenblatt, M. Markov Processes.Structure and Asymptotic Behavior. Springer-Verlag. 1971.
Saghai Maroof MA. Biyashev RM. Yang GP. Zhang Q. and Allard RW. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosome locations, and population dynamics. PNAS 91:5466-5470,1994.
Sanchez-Cespedes M., Rosell R., Pifarre A., Lopez-Cabrerizo MP., Barnadas A., Sanchez JJ., Lorenzo JC., Abad A., Monzo M., Navas-Palacios JJ. Microsatellite alterations at 5q21, 11p13, and 11p15.5 do not predict survival in non-small cell lung cancer. Clinical Cancer Research 3(7): 1229-1235, 1997.
Sawada I., Schmid LW., Deka N., Paulson KE. and Willard C. Repetitive human DNA sequence. Cold Spring Harbor Symposia on Quantitative Biology 51:471-477, 1986.
Schuler GD., Boguski MS., Stewart EA. et al. A gene map of the human genome. Science 274(5287): 540-546, 1996.
Schweitzer, J. K., and Livingston, D. M. Destabilization of CAG trinucleotide repeat tracts by mismatch repair mutations in yeast. Hum. Mol. Genet 146:769-779.1997.
Sia EA., Kokoska RJ., Dominska M., Greenwell P., Petes TD. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Molecular & Cellular Biology 17(5): 2851-2858, 1997.
Singer MF. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28 (3): 433-4, 1982.
Smit, A.F.A. (1996). The origin of interspersed repeats in the human genome. Curr. Op. Gen. 6; 743–748, 1996
Smith GP. Evolution of repeated DNA sequences by unequal crossover. Science 191(4227): 528-535, 1976.
Southern EM. Long range periodicities in mouse satellite DNA. Journal of Molecular Biology 94(1): 51-69, 1975.
Stallings RL., Ford AF., Nelson D., Torney DC., Hildebrand CE., and Moyzis RK. Evolution and distribution of (GT) n repetitive sequences in mammalian genomes. Genomics 10: 807-815, 1991.
Strachan, T. & Read, A.P. Human Molecular Genetics. (1996). (Bios Scientific Publishers Ltd.
Sutherland GR., and Richards RI. Simple tandem DNA repeats and human genetic disease. PNAS 92: 3636~3641, 1995.
Timchenko LT., and Caskey CT. Trinucleotide repeat disorders in human: discussions of mechanisms and medical issues. FASEB Journal 10: 1589~1597, 1996.
Troyer D., Alexander L., Kirby-Dobbels K., Rohrer GA., and Beattie CW. An unassigned porcine microsatellite linkage group maps to Chromosome 6. Mammalian Genome 7: 224-225,1996.
Weber JL. May PE. Abundant class of human DNA poly-morphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics 44(3):388-96, 1989.
Wierdl, M., Dominska, M. and Petes, T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics 1997; 146:769-779.
Yao J., Eu KW., Seow-Choen F., Vijayan V., Cheah PY. Microsatellite instability and aneuploidy rate in young colorectal-cancer patients do not differ significantly from those in older patients. International Journal of Cancer 80(5): 667-70, 1999.
Yoder, J.A.et al. Cytosine methylation and the ecology of intragenomic parasites. TIG. 13: 335-340. 1997.
Morgan, G.T. Identification in the Human Genome of Mobile elements spread by DNA-mediated transposition. J. Mol. Biol. 254: 1-5, 1995.
Ensembl Genome severs: www.ensembl.org
National Center for Biotechnology Information: www.ncbi.nlm.nih.gov
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top