跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張麗文
研究生(外文):Li-Wen Chang
論文名稱:不同海拔盤古蟾蜍蝌蚪高溫耐受與其可塑性之比較
論文名稱(外文):Heat Tolerance and its Plasticity in Larval Bufo bankorensis from Different Altitudes
指導教授:侯平君侯平君引用關係
指導教授(外文):Ping-Chun Hou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:63
中文關鍵詞:盤古蟾蜍可塑性臨界高溫
外文關鍵詞:plasticityCTmaxbufo bankorensis
相關次數:
  • 被引用被引用:7
  • 點閱點閱:516
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:2
  本研究目的在瞭解不同海拔盤古蟾蜍(Bufo bankorensis)的胚胎及蝌蚪對高溫耐受的差異,以及造成差異的原因是由環境因子還是遺傳分化所導致。實驗分兩部份,第一部份比較阿里山與南仁山盤古蟾蜍胚胎及蝌蚪,在不同溫度下之存活率、發育速率及高溫耐受的差異;第二部份探討盤古蟾蜍蝌蚪臨界高溫在環境溫度改變時的改變速率及其是否會受到胚胎溫度歷史的影響。結果顯示,阿里山族群的總存活率隨溫度增加而下降;南仁山族群的總存活率在20 ℃後隨溫度增加而下降。雖然30 ℃時阿里山與南仁山盤古蟾蜍的總存活率為所有溫度中最差者,但胚胎存活率相當高。在15 ℃時阿里山族群的胚胎存活率最佳,但南仁山族群的胚胎存活率最差。隨溫度增加,蝌蚪發育速率會加快,以較短的蝌蚪期變態。在15與20 ℃時,阿里山族群的發育速率比南仁山族群慢,但在30 ℃時則相反。阿里山與南仁山盤古蟾蜍蝌蚪的臨界高溫(CTmax)表現主要受馴養溫度與發育期的影響,海拔之間並沒有顯著差異。馴養溫度每增加5 ℃,CTmax提高1 ℃左右。兩個海拔盤古蟾蜍蝌蚪的CTmax,在升溫時的改變速率均較降溫時快;由15 ℃升溫至20或25 ℃約2∼3天,由25 ℃降溫至15 或20 ℃約7-14天。胚胎期經歷的溫度會影響蝌蚪期CTmax的表現,但此影響為可逆的。綜合來說,阿里山與南仁山盤古蟾蜍可能已有遺傳上的分化,使其胚胎及蝌蚪能適應不同海拔的溫度環境。
  This study investigated heat tolerance and its plasticity in two altitudinal populations of larval Bufo bankorensis. In the first chapter, I compare survival, developmental rate, and critical thermal maximum (CTmax) of embryos and larvae of Bufo bankorensis from two altitudes at different temperatures. In the second chapter, I examine the rates of CTmax change upon thermal acclimation and the influence of embryonic thermal history on CTmax in larval Bufo bankorensis. Although embryonic survival rates of Alishan and Nanjenshan populations both were very high at 30 °C, the larval survival rates of the two populations were very low suggesting this species is intolerant to high temperatures. At 15 °C, survival rates of embryos and larvae of Alishan population were higher than those of Nanjenshan population, indicating the Nanjenshan population is poor in cold tolerance. Larval developmental rate increased, while larval period decreased, with increasing temperature. Larval developmental rate of Alishan population was slower than that of Nanjenshan population at low temperatures (15 and 20 °C), but the opposite was observed at high temperature (30 °C), suggesting larval development of Alishan population is more sensitive to temperature change. The CTmax between the two altitudinal populations of larval Bufo bankorensis was affected by acclimation temperatures and developmental stages, but it was not influenced by altitudinal populations. CTmax required approximately 2-3 days to stabilize at the new level in heating from 15 to 25 °C, but it required 14 days to stabilize in cooling from 25 to 15 °C. Thermal experience during embryonic period will affect CTmax in the larval stages, however, this effect is reversible. These results suggest that the two altitudinal populations of Bufo bankorensis may have differentiated genetically in order to adapt to their thermal environments.
中文摘要-------------------------------------------------Ⅰ
英文摘要-------------------------------------------------Ⅱ
致謝-----------------------------------------------------Ⅳ
目錄-----------------------------------------------------Ⅴ
表目錄---------------------------------------------------Ⅶ
圖目錄---------------------------------------------------Ⅷ
緒論-----------------------------------------------------1
第一章不同海拔盤古蟾蜍受精卵及蝌蚪溫度耐受之比較---------2
 壹、前言-----------------------------------------------2
 貳、材料與方法-----------------------------------------7
   一、實驗動物---------------------------------------7
   二、採集地氣象資料與水溫資料-----------------------8
   三、胚胎與蝌蚪存活率及蝌蚪期長度之測定-------------8
   四、蝌蚪發育速率與發育零點之計算-------------------9
   五、蝌蚪臨界高溫( C T m a x ) 之測定-------------9
   六、統計分析---------------------------------------1 0
 參、結果-----------------------------------------------1 2
   一、不同馴養溫度下胚胎存活率與總存活率-------------1 2
   二、蝌蚪期長度-------------------------------------1 3
   三、發育速率---------------------------------------1 3
   四、臨界高溫---------------------------------------1 4
 肆、討論-----------------------------------------------1 5

第二章盤古蟾蜍蝌蚪臨界高溫的可塑性-----------------------2 2
 壹、前言-----------------------------------------------2 2
 貳、材料與方法-----------------------------------------2 5
   一、實驗動物的採集及受精卵的製備-------------------2 5
   二、盤古蟾蜍蝌蚪臨界高溫改變速率之測定-------------2 5
   三、盤古蟾蜍胚胎期的溫度歷史,對蝌蚪臨界高溫的影響-2 6
   四、臨界高溫馴化反應速率( ARR) 之估算------------2 6
   五、統計分析---------------------------------------2 7
 參、結果-----------------------------------------------2 8
   一、臨界高溫之改變速率-----------------------------2 8
   二、溫度歷史對蝌蚪臨界高溫的影響-------------------2 9
   三、盤古蟾蜍蝌蚪臨界高溫馴化反應速率(ARR)--------2 9
 肆、討論-----------------------------------------------3 1

結論-----------------------------------------------------3 6
參考文獻-------------------------------------------------3 7
表一∼ 表七----------------------------------------------4 3
圖一∼ 圖十四--------------------------------------------5 0
Allen, K. O., and K. Strawn. 1971. Rate of acclimation of juvenile catfish, Ictalurus punctatus, to high temperatures. Trans. Amer. Fish. Soc. 100: 665-671.

Berven, K. A. 1982. The genetic basis of altitudinal variation in the wood frog Rana sylvatica. Ⅱ. An experimental analysis of larval development. Oecologia 52: 360-369.

Berven, K. A., D. E. Gill, and S. J. Smith-Gill. 1979. Countergradient selection in the green frog, Rana clamitans. Evolution 33: 609-632.

Bradford, D. F. 1984. Temperature modulation in a high-elevation amphibian, Rana muscosa. Copeia 966-976.

Brattstrom, B. H. 1962. Thermal control of aggregation behavior in tadpoles. Herpetologica 18: 38-46.

Brattstrom, B. H. 1968. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24: 93-111.

Brattstrom, B. H. 1970. Thermal acclimation in Australian amphibians. Comp. Biochem. Physiol. 35: 69-103.

Brattstrom, B. H., and P. Lawrence. 1962. The rate of thermal acclimation in anuran amphibians. Physiol. Zool. 35: 148-156.

Brattstrom, B. H., and P. Regal. 1965. Rate of thermal acclimation in the Mexican salamander Chiropterotriton. Copeia 514-515.

Brown, H. A. 1969. The heat resistance of some anuran tadpoles(Hylidae and pelobatidae). Copeia 138-147.

Chung, K. S. 1981. Rate of acclimation of tropical salt-marsh fish(Cyprinodon dearborni)to temperature changes. Hydrobiologia 78: 77-81.

Chung, K. S. 2000. Heat resistance and thermal acclimation rate in tropical tetra Astyanax bimaculatus of Venezuela. Environ. Biol. Fishes. 57: 459-463.

Claussen, D. L. 1977. Thermal acclimation in Ambystomatid salamanders. Comp. Biochem. Physiol. 58A: 333-340.

Claussen, D. L. 1980. Thermal acclimation in the crayfish, Orconectes rusticus and O. virilis. Comp. Biochem. Physiol. 66A: 377-384.

Cowles, R. B., and C. M. Bogert. 1944. A preliminary study of the thermal requirements of desert reptiles. Bull. Amer. Mus. Nat. Hist. 83: 265-296.

Cupp, P. V., Jr. 1980. Thermal tolerance of five salientian amphibians during development and metamorphosis. Herpetologica 36: 234-244.

Cupp, P. V., Jr., and E. D. Brodie, Jr. 1972. Intraspecific variation in the critical thermal maximum of the plethodontid salamander, Eurycea quadridigitatus. Am. Zool. 12: 689.

Davenport, C. B., and W. E. Castle. 1895. Studies in morphogenesis, Ⅲ. On the acclimation of organisms to high temperatures. Arch. F. Entw. 2: 227-249.

Delson, J., and W. G. Whitford. 1973. Critical thermal maxima in several life history stages in desert and montane populations of Ambystoma tigrinum. Herpetologica 29: 352-355.

Denver, R. J. 1997. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. Amer. Zool. 37: 172-184.

De moed, G. H., G. De Jong, and W. Scharloo. 1997. The phenotypic plasticity of wing size in Drosophila melanogaster: the cellular basis of its genetic variation. Heredity 79: 260-267.

Dunson, W. A. 1977. Tolerance to high temperature and salinity by tadpoles of the Philippine frog, Rana cancrivora. Copeia 375-378.

Floyd, R. B. 1983. Ontogenetic change in the temperature tolerance of larval Bufo marinus(Anura: Bufonidae). Comp. Biochem. Physiol. 75A:267-271.

Floyd, R. B. 1985. Effects of photoperiod and starvation on the temperature tolerance of larvae of the giant toad, Bufo marinus. Copeia 625-631.

Fry, F. E. J. 1958. Temperature compensation. Ann. Rev. Physiol. 20:207-224.

Gibson, M. B. 1954. Upper lethal temperature relations of the guppy, Lebistes reticulatus. Can. J. Zool. 32:393-407.

Goater, C. P. 1994. Growth and survival of postmetamorphic toads: interactions among larval history, density, and parasitism. Ecology 75: 2264-2274.

Gosner, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183-190.

Harkey, G. A., and R. D. Semlitsch. 1988. Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata. Copeia 1001-1007.

Heatwole, H., S. B. DE Austin, and R. Herrero. 1968. Heat tolerances of tadpoles of two species of tropical anurans. Comp. Biochem. Physiol. 27:807-815.

Herreid, C. F., Ⅱ, and S. Kinney. 1967. Temperature and development of the woodfrog, Rana sylvatica, in Alaska. Ecology 48: 579-590.

Hoppe, D. M. 1978. Thermal tolerance in tadpoles of the chorus frog. Pseudacris triseriata. Herpetologica 34:318-321.

Howard, R. D. 1978. The influence of male-defended oviposition sites on early embryo mortality in Bullfrogs. Ecology 59: 789-798.

Hutchison, V. H. 1961. Critical thermal maxima in salamanders. Physiol. Zool. 34: 92-125.

Hutchison, V. H., and R. J. Kosh. 1964. The effect of photoperiod on the critical thermal maxima of painted turtles(Chrysemys picta). Herpetologica 20: 233-238.

Hutchison, V. H., and J. D. Maness. 1979. The role of behavior in temperature acclimation and tolerance in ectotherms. Am. Zool. 19: 367-384.

Hutchison, V. H., and S. D. Rowlan. 1975. Thermal acclimation and tolerance in the mudpuppy, Necturus maculosus. J. Herpetol. 9: 367-368.

Licht, L. E. 1967. Growth inhibition in crowded tadpoles: Intraspecific and interspecific effects. Ecology 48: 736-745.

Lowe, C. H., and V. J. vance. 1955. Acclimation of the critical thermal maximum of the reptile Urosaurus ornatus. Science 122:73-74.

Manis, M. L., and D. L. Claussen. 1986. Environmental and genetic influences on the thermal physiology of Rana sylvatica. J. Therm. Biol. 11: 31-36.

McFarland, W. N. 1955. Upper lethal temperatures in the salamander Taricba torosa as a function of acclimation. Copeia 3:191-194.

Miller, K., and G. C. Packard. 1977. An altitudinal cline in critical thermal maxima of chorus frogs(Pseudacris triseriata). Am. Nat. 111: 267-277.

Morey, S., and D. Reznick. 2001. Effects of larval density on postmetamorphic spadefoot toads(Spea Hammondii). Ecology 82: 510-522.

Newman, R. A. 1994. Effects of changing density and food level on metamorphosis of a desert amphibian. Scaphiopus couchii. Ecology 75: 1085-1096.

Relyea, R. A. 2001. The lasting effects of adaptive plasticity: predator-induced tadpoles become long-legged frogs. Ecology 82:1947-1955.

Scott, D. E. 1990. Effects of larval density in Ambystoma opacum: an experiment in large-scale field enclosures. Ecology 71: 296-306

Sherman, E. 1980. Ontogenetic change in thermal tolerance of the toad Bufo woodhousii fowleri. Comp. Biochem. Physiol. 65A: 227-230.

Smith, M. J. 1957. Temperature tolerance and acclimation in Drosophila obscura. J. Exp. Biol. 34:85-96.

Spoor, W. A. 1955. Loss and gain of heat-tolerance by the crayfish. Biol. Bull. 108: 77-87.
Tollrian, R. 1995. Predator-induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76: 1691-1705.

Ultsch, G. R., D. F. Bradford, and J. Freda. 1999. Physiology: Coping with the environment. pp.189-214. in Roy W. McDiarmid and Ronald Altig. Eds. Tadpoles. The university of Chicago Press.

Witters, L. R., and L. Sievert. 2001. Feeding causes thermophily in the woodhouse’s toad(Bufo woodhousii). J. Therm. Biol. 26: 205-208.

呂光洋。1990。台灣的兩棲動物。台灣省政府教育廳。

施宜汝。1997。不同海拔盤古蟾蜍蝌蚪喜好溫度、發育與代謝之比較。國立成功大學生物學研究所碩士論文。

黃淑萍。1998。不同海拔盤古蟾蜍有氧代謝力及肺換氣之比較。國立成功大學生物學研究所碩士論文。

黃青萸。2000。高低海拔盤古蟾蜍(Bufo bankoresis)蝌蚪溫度耐受性之比較。國立成功大學大專學生參與專題研究計劃成果報告。

楊懿如。1998。賞蛙圖鑑-台灣蛙類野外觀察指南。中華民國自然生態攝影學會。台北。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊