跳到主要內容

臺灣博碩士論文加值系統

(54.83.119.159) 您好!臺灣時間:2022/01/17 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周婉琪
研究生(外文):Wan-Chi Chou
論文名稱:水稻中轉錄作用起始因子eIF5A及兩個MAPkinase基因受發育及逆境調控之研究
論文名稱(外文):Expression of eukaryotic translation initiation factor 5A and two mitogen-activated protein kinase genes in rice are regulated by development and environmental stresses
指導教授:黃定鼎黃定鼎引用關係黃浩仁
指導教授(外文):Dinq-Ding HuangHao-Jen Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:76
中文關鍵詞:逆境發育基因調控轉錄作用起始因子5A
外文關鍵詞:Translation Initiation Factor 5AGene RegulationDevelopmentMAP KinaseStress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
Eukaryotic translation initiation factor 5A (eIF5A)是所有真核生物中唯一需在其特定賴氨酸殘基上,經轉譯後修飾為hypusine後才具有生物活性的蛋白質。eIF5A已被證實直接影響了細胞的增殖,但迄今關於eIF5A在細胞內所扮演的角色仍有許多未知之處。 本研究主要探討水稻(Oryza sativa)中兩個eIF5As基因(OseIF5A-1及OseIF5A-2)所具有的特性及功能,經由序列分析比對後, OseIF5As之氨基酸序列相似度高達為93﹪;南方墨點分析(southern blot analysis)證實兩個OseIF5As基因在水稻基因組中為單一基因。 為進一步探討水稻OseIF5As基因的功能,於是以北方墨點分析(northern blot analysis),結果顯示: OseIF5A-1及OseIF5A-2基因在各器官中均有表現;OseIF5A-1 的mRNA在已抽穗的花穗(mature panicles after heading)中較未抽穗的花穗(immature panicles)中累積量較高,OseIF5A-2的mRNA量在花穗發育時期中無顯著差異;此外,OseIF5A-1及OseIF5A-2基因均參與調控水稻葉片及根部的發育過程。 當水稻懸浮細胞遭受缺糖(sucrose starvation)逆境時,OseIF5A-1 及 OseIF5A-2 基因會對此逆境產生不同反應;在重金屬與鹽害逆境下,OseIF5As 基因均受到誘導而大量表現,但於高濃度鹽害逆境下,OseIF5A-1 及 OseIF5A-2 基因會出現不同的反應;在高溫及低溫的生長環境時,則抑制OseIF5As 基因表現量。 顯示OseIF5As基因與水稻生長發育過程及細胞遭受逆境時均有相關。
事實上,植物在遭遇環境逆境時,需經由訊息傳遞系統來傳達外界刺激的訊息,以產生適當的生理反應並進而適應環境的變化,其中以 MAPK(mitogen-activated protein kinase)為主的訊息傳遞系統,已被證實與逆境的訊息傳遞有關。 本研究另探討水稻中兩個 MAPK 基因(OsMAPK2 及 OsMAPK4b)所參與之逆境訊息傳遞機制,於是進行北方墨點分析法,結果顯示: 水稻懸浮細胞中 OsMAPK2 及 OsMAPK4b 基因表現量均受缺糖、鹽害逆境刺激的誘導而增加,不過懸浮細胞遭受重度鹽害逆境時,OsMAPK2 及 OsMAPK4b 基因表現具有不同 kinetic 之差異。 此外,高溫的生長環境則抑制 OsMAPK2 及 OsMAPK4b 基因的表現量;低溫的生長環境下,OsMAPK2基因可受到誘導而大量表現,但 OsMAPK4b 基因則不受影響。 綜合以上結果,推測水稻中 OsMAPK2 及 OsMAPK4b 基因參與某些逆境訊息的傳遞。
最後,為了解逆境對水稻懸浮細胞生長的影響,於是以 Evans blue 染劑進行染色後,發現缺糖及鹽害逆境均促使水稻懸浮細胞死亡率的增加。 進一步萃取細胞內DNA並經電泳分析後,顯示缺糖及高濃度鹽害逆境可造成 DNA degradation。 為了解逆境下懸浮細胞形態的變化,以 DAPI 染劑進行染色後,缺糖逆境下之懸浮細胞呈現染色質收縮(chromatin condensation)的現象。 本研究為首度提出,水稻懸浮細胞在缺糖與高濃度鹽害逆境下,可誘導細胞進行計畫性死亡(programmed cell death)。
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein known to contain the unusual amino acid hypusine that originates from a two-enzyme-catalysed post-translational modification of a lysine residue. Its biological activity is promoted by the unusual amino acid hypusine. The necessity for hypusine-containing eIF5A for cellular proliferation is well established. However, the precise cellular function of eIF5A is to date unknown. In this study, we report on the characterization of two cDNA clones encoding eIF5A in rice (Oryza sativa). Sequence analysis revealed that the two cDNAs share 93% amino acid sequence identity, appearing to represent two different rice eIF5A (OseIF5A-1 and OseIF5A-2). In order to study the functional differences between the two isoforms, their expression patterns in rice plants and suspension cultured cells were determined. OseIF5A-1 was expressed in all plant organs. High relative amounts of mRNA from OseIF5A-1 were detected in mature panicles, compared with that in immature panicles. However, the expression pattern of OseIF5A-2 showed only relatively minor variations during panicle development. In addition, both OseIF5A-1 and OseIF5A-2 were spatially regulated during rice leaf and root development. In suspension-cultured cells, the two genes responded differently to sucrose starvation and salt stress. A similar rapid response of OseIF5A-1 and OseIF5A-2 were observed in heavy metal-treated cells. These results suggested that OseIF5A genes might be regulated by plant development and environmental stresses in different ways.
Mitogen-activated protein kinase(MAPK)are serine/threonine protein kinases that are activated for controlling cellular functions in response to external signals. In this study, we found that the mRNA levels of two OsMAPK genes, OsMAPK2 and OsMAPK4b, were up-regulated in reponse to sucrose starvation and salt stress but down-regulated under heat stress in rice suspension-cultured cells. After 24 hours of low-temperature treatment, the expression of OsMAPK2 transcript was increased, whereas the OsMAPK4b was unaffected. In addition, the expression of OsMAPK2 and OsMAPK4b were temporally regulated during severe salt stress treatment. These results suggested that OsMAPK2 and OsMAPK4b may function in the stress-signalling pathways.
In addition, the viability of rice suspension-cultured cells was decreased by sucrose starvation and salt stress. Biochemical analysis revealed that both degradation of nuclear DNA and an apparent condensation of chromatin, two characteristic features of apoptosis in animal cells, have been observed in rice suspension-cultured cells during sucrose starvation. Degradation of nuclear DNA was also observed in rice suspension-cultured cells but no apparent condensation of chromatin after severe salt stress treatment. These phenomena indicate that programmed cell death in rice suspension-cultured cells treatmented with sucrose starvation and severe salt stress may share some similar characteristics with apoptosis in animal cells.
誌謝…………………………………………………………1
中文摘要……………………………………………………2
英文摘要……………………………………………………4
目錄…………………………………………………………6
表目錄………………………………………………………8
圖目錄………………………………………………………9
前言…………………………………………………………11
材料與方法………………………………………………..19
1. 水稻懸浮培養細胞之建立……………………………19
2. 水稻懸浮細胞的逆境處理……………………………20
3. 水稻植株的培養………………………………………20
4. 水稻根部的培養………………………………………21
5. DNA核酸序列定序與電腦比對………………………21
6. 南方墨點轉漬法………………………………………22
7. 北方墨點轉漬法………………………………………26
8. 細胞核染色……………………………………………29
9. DNA fragmentation…………………………………30
結果………………………………………………………32
1.水稻OseIF5A的核酸與氨基酸序列分析………………32
2.以南方墨點法分析水稻基因組中OseIF5A-1與OseIF5A-2的重複數…………………………………33
3.以北方墨點法探討OseIF5A-1與OseIF5A-2在逆境下及
不同組織中的表現………………………………………33
4.逆境抑制水稻懸浮細胞生長並誘導細胞死亡………37
5.逆境誘導水稻懸浮細胞進行計畫性細胞死亡………37
討論………………………………………………………38
結論………………………………………………………45
參考文獻…………………………………………………47
附錄一……………………………………………………76
Alexander M.R., Tyers M., Perret M., Craig B.M., Fang K.S. and Gustin M. C. (2001) Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Mol. Biol. Cell. 12:53-62.
Alok K.S., Hofmann M.G., Römer U., Köckenberger W. and Elling L. (2002) Metabolizable and non-metabolizable sugars activate different signal transduction pathway in tomato. Plant Physiol. 128: 1480-1489.
Altschul S.F., Gish W., Miller W., Myers E.W. and Lipman D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
Asai T., Stone J.M., Heard J.E., Kovtun Y. and Yorgey P. (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12: 823-1835.
Benne R., Brown-Luedi M.L. and Hershey J.W. (1978) Purification and characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes. J. Biol. Chem. 253: 3070-7.
Bevec D., Klier H., Holter W., Tschachler E., Valent P., Lottspeich F., Baumruker T. and Hauber J. (1994) Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes. Proc. Natl. Acad. Sci. USA 91: 10829-33.
Bögre L., Ligterink W., Heberle-Bors E. and Hirt H. (1996) Mechanosensors in plants. Nature 383: 489-490.
Browning K.S. (1996) The plant translational apparatus. Plant Mol. Biol. 32: 107-44.
Burssens S., de Almeida Engler J., Beeckman T., Richard C., Shaul O., Ferreira P., Van Montagu M. and Inzé D. (2000) Developmental expression of the Arabidopsis thaliana CycA2;1 gene. Planta 211: 623-631.
Callard D., Axelos M. and Mazzolini L. (1996) Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol. 112: 705-715.
Cardinale F., Meskiene I., Ouaked F. and Hirt H. (2002) Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell 14: 703-711.
Casanovas O., Miro F., Estanyol J.M., Itarte E., Agell N. and Bachs O. (2000) Osmotic stress regulates the stability of cyclin D1 in a p38SAPK2-dependent manner. J. Biol. Chem. 275: 35091-35097.
Chae H.S. and Lee W.S. (2001) Ethlene- and enzyme-mediated superoxide production and cell death in carrot cells grown under carbon starvation. Plant Cell Report 20: 256-261.
Chamot D. and Kuhlemeier C. (1992) Differential expression of genes encoding the hypusine-containing translation initiation factor, eIF-5A, in tobacco. Nucleic Acids Res. 20: 665-669.
Chen M.H., Liu L.F., Chen Y.R., Wu H.K. and Yu S.M. (1994) Expression of α-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J. 6: 625-636.
Chou W.C., Tai Y.H., Fu S.F., Huang D.D. and Huang H.J. (2001) GenBank Accession number AJ312906.
Conger B.V., Hanning G.E., Gray D.J. and Mcdaniel J.K. (1983) Direct embryogenesis from mesophyll cells of orchardgrass. Science 221: 850-851.
Cosgrove D.J. (1997) Relaxation in a high-sress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9: 1031-1041.
Decroocq-Ferrant V., Decroocq S. van Went J., Schmidt E. and Kreis M. (1995) A homologue of the MAP/ERK family of protein kinase genes is expressed in vegetative and in female reproductive organs of Petunia hybrida. Plant Mol. Biol. 27: 339-350.
Danon A. and Gallois P. (1998) UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana. FEBS Lett. 437: 131-136.
Dresselhaus T., Cordts S. and Lörz H. (1999) A transcript encoding translation initiation factor eIF-5A is stored in unfertilized egg cells of maize. Plant Mol. Biol. 39: 1063-1071.
Edwards M.C., Liegeois N., Horecka J., DePinho R.A., Sprague G.F., Tyers J.M. and Elledge S.J. (1997) Human CPR gene impart a Far- phenotype on yeast cell. Genetics 147: 1063-1076.
Freeling M. (1992) A conceptual frame work for maize leaf development. Dev. Biol. 153: 44-58.
Fujiki Y., Ito M., Nishida I. and Watanabe A. (2000) Multiple signaling pathways in gene expression during sugar starvation. Pharmacological analysis of din gene expression in suspension-cultured cells of Arabidopsis. Plant Physiol. 124: 1139-48.
Gordon E.D., Mora R., Meredith S.C., Lee C. and Lindquist S.L. (1987) Eukaryotic initiation factor 4D, the hypusine-containing protein, is conserved among eukaryotes. J. Biol. Chem. 262: 16585-9.
Gupta A.K., Lee Y.J., Galoforo S.S., Berns C.M., Martinez A.A., Corry P.M., Wu X. and Guan K.L. (1997) Differential effect of glucose deprivation on MAPK activation in drug sensitive human breast carcinoma MCF-7 and multidrug resistant MCF-7/ADR cells. Mol. Cell. Biochem. 170: 23-30.
Gustin M.C., Albertyn J., Alexander M. and Davenport K. (1998) MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62:1264-1300.
Hanauske-Abel H.M., Slowinska B., Zagulska S., Wilson R.C., Staiano-Coico L., Hanauske A.R., McCaffrey T. and Szabo P. (1995) Detection of a sub-set of polysomal mRNAs associated with modulation of hypusine formation at the G1-S boundary. Proposal of a role for eIF-5A in onset of DNA replication. FEBS Lett. 366: 92-98.
Herskowitz I. (1995) MAP kinase pathways in yeast: for mating and more. Cell 80: 187-197.
Huang H.J., Fu S.F., Tai Y.H., Chou W.C. and Huang D.D. (2002) Expression of Oryza sativa MAP kinase gene is developmentally regulated and stress-responsive. Physiol. Plant. 114: 572-580.
Huang H.J., Tai Y.H., Huang D.D. and Kuo T.T. (1999) GenBank Accession number AJ250311.
Hohmann S. (2002) Osmotic adaptation in yeast--control of the yeast osmolyte system. Int. Rev. Cytol. 215: 149-187.
Ho S.L., Jang J.M. and Yu S.M. (2000) GenBank Accession number AF241166.
Jenkins Z.A., Haag P.G. and Johansson H.E. (2001) Human eif5a2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5a with tissue-specific expression. Genomics 71: 101-109.
John P.C., Sek F.J., Carmichael J.P. and McCurdy D.W. (1990) p34cdc2 homologue level, cell division, phytohormone responsiveness and cell differentiation in wheat leaves. J. Cell. Sci. 97: 627-630.
Jonak C., Kiegerl S., Ligterink W., Barker P.J., Huskisson N.S. and Hirt H. (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA 93: 11274-11279.
Jonak C., Kiegerl S., Lloyd C., Chan J. and Hirt H. (1995) MMK2, a novel alfalfa MAP kinase, specifically complements the yeast MPK1 function. Mol. Gen. Genet. 248: 686-694.
Jonak C., Ligterink W. and Hirt H. (1999) MAP kinases in plant signal transduction. Cell. Mol. Life Sci. 55: 204-213.
Kang H.A. and Hershey J.W.B. (1994) Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J. Biol. Chem. 269: 3934-3940.
Katsuhara M. (1997) Apoptosis-like cell death in barley roots under salt stress. Plant Cell Physiol. 38: 1091-1093.
Katsuhara M. and Kawasaki T. (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol. 37: 169-173.
Katsuhara M. and Shidasaka M. (2000) Cell death and growth recovery of barley after transient salt stress. J Plant Res. 113: 239-243.
Kawai M. and Uchimiya H. (2000) Coleoptile senescence in rice (Oryza sativa L.). Annals of Botany 86: 405-414.
Kawasaki S., Borchert C., Deholos M., Wang H., Brazille S., Kawai K., Galbraith D. and Bohert H.J. (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889-905.
Koga-ban Y., Chiu W.L., Tena G. and Sheen J. (1991) Alteration in gene expression during cold treatment of rice plant. Plant Cell Physiol. 32: 901-905.
Lee J.S., Seok S.J. and Eun M.Y. (1998) GenBank Accession number AF094773.
Lee Y.J., Galoforo S.S., Berns C.M., Chen J.C., Davis B.H., Sim J.E., Corry P.M. and Spitz D.R. (1998) Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J. Biol. Chem. 273: 5294-5299.
Lee Y.L., Galoforo S.S., Berns C.M., Tong W.P., Kim H.R.C. and Corry P.M. (2000) Clucose deprivation-induced cytotoxicity in drug resistant human breast carcinoma MCF-7/ADR cells: roles of c-myc and bcl-2 in apoptic cell death. Ann. N.Y. Acad. Sci. 899: 349-362.
Ligterink W., Kroj T., zur Nieden U., Hirt H. and Scheel D. (1997) Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science 276: 2054-2057.
Liljeroth E. and Bryngelsson T. (2001) DNA fragmentation in cereal roots indicative of programmed root cortical cell death. Physiol. Plant. 111: 365-372.
Lin C. C. and Kao C. H. (1995) NaCl stress in rice seedlings: the influence of calcium on root growth. Bot. Bull. Acad. Sin. 36: 41-45.
Lipowsky G., Bischoff F.R., Schwarzmaier P., Kraft R., Kostka S., Hartmann E., Kutay U. and Gorlich D. (2000) Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J. 19: 4362-4371.
Liu T., Staden J.van. and Cress W.A. (2000) Salinity induced nuclear and DNA degradation in meristematic cells of soybean (Glycine Max (L.)) roots. Plant Growth Regulation 30: 49-54.
Madhani H.D. and Fink G.R. (1998) The riddle of MAP kinase signaling specificity. Trends Genet. 14: 151-155.
Marshall C.J. (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. 4: 82-89.
Meharg A.A. (1994) Intergrated tolerance mechanisms – constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell and Environment 17: 989-993.
Mehta K.D., Leung D., Lefebvre L. and Smith M. (1990) The ANB1 locus of Saccharomyces cerevisiae encodes the protein synthesis initiation factor eIF-4D. J. Biol. Chem. 265: 8802-8807.
Meskiene I. and Hirt H. (2000) MAP kinase pathways: molecular plug-and-play chips for the cell. Plant Mol. Biol. 42: 791-806.
Mikolajczyk M., Awotunde O.S., Muszynska G., Klessig D.F. and Dobrowolska G. (2000) Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 12: 165-178.
Mittler R. and Lam E. (1995) Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 7: 1951-1962.
Mizoguchi T., Hayashida N., Yamaguchi-Shinozaki K., Kamada H. and Shinozaki K. (1993) ATMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Lett. 336: 440-444.
Mizoguchi T., Irie K., Hirayama T., Hayashida N., Yamaguchi-Shinozaki K., Matsumoto K. and Shinozaki K. (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93: 765-769.
Mizoguchi T., Irie K. and Shinozaki K. (1997) Environmental stress response in plants: the role of mitogen-activated protein kinase. Trends Biotechnol. 15: 15-19.
Moldave K. (1985) Eukaryotic protein synthesis. Annu. Rev. Biochem. 54: 1109-1149.
Munnik T., Ligterink W., Meskiene I., Calderini O., Beyerly J., Musgrave A. and Hirt H. (1999) Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J. 20: 381-388.
Nobel P.S. (1988) Environment Biology of Agaves and Cacti. New York: Cambridge University press.
O’Brien I.E.W., Murray B.G., Baguley B.C., Morris B.A.M. and Ferguson I.B. (1998) Major changes in chromatin condensation suggest the presence of an apoptotic pathway in plant cells. Exp. Cell. Res. 241: 46-54.
Pang J.H. and Chen K.Y. (1994) Global change of gene expression at late G1/S boundary may occur in human IMR-90 diploid fibroblasts during senescence. J. Cell. Physiol. 160: 531-538.
Park M.H., Wolff E.C. and Folk J.E. (1993) Is hypusine essential for eukaryotic cell proliferation? Trends Biochem. Sci. 18: 475-479.
Pay A., Heberle-Bors E. and Hirt H. (1991) Isolation and sequence determination of the plant homologue of the eukaryotic initiation factor 4D cDNA from alfalfa, Medicago sativa. Plant Mol. Biol. 17: 927-929.
Pennell R.I. and Lamb C. (1997) Programmed cell death in plants. Plant Cell 9: 1157-1168.
Sambrook J., Fritsch E.F. and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual, 2nd edi. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Schnier J., Schwelberger H.G., Smit-McBride Z., Kang H.A. and Hershey J.W. (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 11: 3105-3114.
Seo S., Okamoto M., Seto H., Ishizuka K., Sano H. and Ohashi Y. (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270: 1988-1992.
Stafstrom J.P., Altschuler M. and Anderson D.H. (1993) Molecular cloning and expression of a MAP kinase homologue from pea. Plant Mol. Biol. 22: 83-90.
Stein J.C. and Hansen G. (1999) Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol. 121: 71-80.
Tada Y., Hata S., Takata Y., Nakayashiki H., Tosa Y. and Mayama S. (2001) Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. Mol. Plant. Microbe. Interact. 14: 477-486.
Tassi F., Maestri E. Restivo F.M. and Harmiroi N. (1992) The effects of carbon starvation on cellular metabolism and protein and RNA synthesis in Gerbera callus cultures. Plant Sci. 83: 127-136.
Thomashow M.F. (1990) Molecular genetics of cold acclimation in higher plants. Adv. Genet. 28: 99-131.
Wang T.W. and Arteca R.N. (1995) Identification and characterization of cDNAs encoding ethylene biosynthetic enzymes from Pelargonium x hortorum cv Snow Mass leaves. Plant Physiol. 109: 627-636.
Wang T.W., Lu L., Wang D. and Thompson J.E. (2001) Isolation and characterization of senescence-induced cDNAs encoding deoxyhypusine synthase and eukaryotic translation initiation factor 5A from tomato. J. Biol. Chem. 276: 17541-17549.
Waskiewicz A.J. and Cooper J.A. (1995) Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr. Opin. Cell. Biol. 7: 798-805.
Widmann C., Gibson S., Jarpe M.B. and Johnson G.L. (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79: 143-180.
Wilson C., Eller N., Gartner A., Vicente O. and Heberle-Bors E. (1993) Isolation and characterization of a tobacco cDNA clone encoding a putative MAP kinase. Plant Mol. Biol. 23: 543-551.
Wilson C., Voronin V., Touraev A., Vicente O. and Heberle-Bors E. (1997) A developmentally regulated MAP kinase activated by hydration in tobacco pollen. Plant Cell 9: 2093-2100.
Xu P. and Roossinck M.J. (2000) Cucumber mosaic virus D satellite RNA-induced programmed cell death in tomato. Plant Cell 12: 1079-1092.
Yen C.H. and Yang C.H. (1998) Evidence for programmed cell death during leaf senescence in plants. Plant and Cell Physiol. 39: 922-927.
Yu S.M. (1999) Cellular and genetic responses of the plants to sugar starvation. Plant Physiol. 121: 687-693.
Zhang S. and Kiessig D.F. (2001) MAPK cascades in plant defense signaling. Trends in Plant Science 6: 520-527.
Zuk D. and Jacobson A. (1998) A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J. 17: 2914-2925.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊