跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 14:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋立民
研究生(外文):Li-Ming Sung
論文名稱:人類染色體22三核甘酸重複序列高解析度圖譜之建立與染色體21之分析比較
論文名稱(外文):High resolution map construction of trinucleotide repeats in human chromosome 22 and profile comparison with chromosome 21
指導教授:陳啟清陳啟清引用關係
指導教授(外文):C.C. Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物學系碩博士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:118
中文關鍵詞:三核甘酸重複序列縱列式重複序列基因組馬可夫連鎖模式DNA聚合酶滑脫微衛星DNA
外文關鍵詞:microsatellitesDNA polymerase slippagebest-fit modelMarkov chain modelchromosome positioning systemgenometandemly repeated sequencestrinucleotide repeats
相關次數:
  • 被引用被引用:1
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
  三核甘酸重複序列 (trinucleotide repeats; TNRs) 為重複單元由三個鹼基所形成之縱列式重複序列 (tandemly repeated sequence) 。近年來,有愈來愈多的證據顯示三核甘酸重複序列的不穩定擴張現象會引起許多人類遺傳疾病。因此對於其在基因組中定位及相關分佈特性的研究就顯得刻不容緩。本研究主要藉由GCG伺服器與自行開發之搜尋軟體,針對人類第22條染色體中20種三核甘酸重複序列進行分析,目的在於建立其高解析度分佈圖譜,並探討與第21條染色體之相關分佈特性之差異。
  結果顯示CAC/GTG/CTC/GAG為出現頻率與覆蓋率最高的重複序列種類,至於相對距離則與出現頻率呈現高度反相關性,多半集中於5~50kb以內,顯示其廣泛分佈的特性,且有24.18%的三核甘酸重複序列位於基因區內。透過馬可夫連鎖模式 (Markov chain model) 的應用,三核甘酸重複序列之最佳分佈模式自重複4次起,皆吻合期望值的分佈,且出現較高之最大長度的重複種類,通常也伴隨較高的DNA聚合酶滑脫率,這顯示DNA聚合酶滑脫效應的確參與三核甘酸重複序列擴張的過程。最後在與第21條染色體之比較中,由於兩條染色體之G+C content差異頗大,進而造成相異之三核甘酸重複序列的分佈特性。盼望藉由此研究能更深入瞭解微衛星DNA在人類基因組中所可能扮演的角色,並對於相關的研究能有所助益。
  Trinucleotide repeats (TNRs) , which repeat unit consists of three nucleotide base-pair, are one member of tandemly repeated sequences. In the past few years, more and more evidences had been approved that instable expansion of certain TNRs may be the cause of many human inheritable diseases. Therefore, it is of great urgency to investigate the location and distribution properties of TNRs within the whole human genome. In this thesis, I construct the chromosome positioning system of all twenty kinds of TNRs in human chromosome 22 q-arm by both GCG server and search software developed by ourselves. The goals of this research are not only to build high resolution map of TNRs in human chromosome 22, but to proceed profile comparison with chromosome 21.
  The results indicate the CAC/GTG/CTC/GAG repeat patterns own the highest frequency and coverage of TNRs. Further, the adjacent distance and appearance present high inverse proportion. The relationship confirms the widespread property of TNRs, which distribute mostly within 5 to 50 kb. Besides, 24.18 percent of TNRs locate in gene regions of human chromosome 22. By Markov chain model, since repeat number (n) ≧ 4, the best-fit models deduced from observed values match expected values almost. Moreover, by longer repeat length patterns usually accompanying higher DNA polymerase slippage rate, I conclude the DNA polymerase slippage event would actually involve in expansion process of TNRs. Finally, in the profile comparison aspect, the different completely distribution properties of TNRs between human chromosome 21 & 22 is not beyond my expectations because of the dissimilar G+C content. Hope this thesis be helpful and useful to related research field for elucidating more deeply the important roles of microsatellite DNA in human genome.
目錄
中文摘要
英文摘要
誌謝
表目錄....................................................................................I
圖目錄................................................................................III
第一章 文獻回顧.................................................................1
第一節 縱列式重複序列之種類...............................................1
第二節 微衛星DNA之簡介.....................................................3
第三節 微衛星DNA扮演之生物功能與應用.........................4
第四節 微衛星DNA之不穩定性與人類疾病的關係.............8
第五節 人類基因體計劃.........................................................13
第六節 後基因組學時代與生物資訊學.................................16
第二章 研究動機與目的...................................................18
第三章 材料與方法...........................................................19
第一節 研究材料.....................................................................19
第二節 研究方法之邏輯架構.................................................21
第四章 結果.......................................................................25
第一節 三核甘酸重複序列高解析分佈圖譜之建立.............25
第二節 三核甘酸重複序列之出現頻率與最大長度.............27
第三節 三核甘酸重複序列之覆蓋率.....................................29
第四節 三核甘酸重複序列位於基因區與非基因區之差異.31
第五節 三核甘酸重複序列片段相對距離之分佈.................32
第六節 三核甘酸重複序列最佳分佈模式之建立與DNA聚合酶滑脫率之計算....................................................34
第五章 三核甘酸重複序列於人類第21與22條染色體之分析結果比較.......................................................37
第一節 三核甘酸重複序列出現頻率與最大長度之比較.....37
第二節 三核甘酸重複序列覆蓋率之比較.............................38
第三節 三核甘酸重複序列基因區分佈比例之比較.............38
第四節 三核甘酸重複序列DNA聚合酶滑脫率之比較.......39
第六章 討論.......................................................................40
參考文獻...........................................................................108
附錄
自述
Altonen, L. A., Peltomaki, P., Leach, F. S., Sistonen, P., Pylkkanen, L., Mecklin, J-P. Jarvinen, H., Powell, S., Jen, J., Hamilton, S. R., Petersen, G.M., Kinzler, K.W., Vogelstein, B. and de la Chapelle, A. Clues to the pathogenesis of familial colorectal cancer. Science 260: 812-816 (1993).
Baxevanis, A. D., and Francis Ouellette, B. F. Bioinformatics: a practical guide to the analysis of gene and proteins. Wiley-Interscience (1998).
Benitez, J., Osorio, A., Barroso, A., Arranz, E., Diaz-Guillen, M. A., Robledo, M. Rodriguez de Cordoba, S. and Heine-Suner, D. A region of allelic imbalance in 1q31-32 in primary breast cancer coincides with a recombination hot spot. Cancer Research 57(19): 4217-4220 (1997).
Benson, D. A., Boguski, M., Lipman, D. J. and Ostell, J. GenBank. Nucleic Acids Res. 22(17): 3441-3444 (1994).
Birne8, E., Bateman, A., Clamp, M.E. et al. Mining the draft human genome. Nature 409: 827-828 (2001).
Braaten, D.C., Thomas, J.R., Little, R.D. et. al. Locations and contexts or sequences that hybridize to poly (dG-dT) (dC-dA) in mammalian ribosomal DNAs and two X-linked genes. Nucleic Acids Res. 16: 865-881 (1988).
Britten, R.J. and Kohne, D.E. Repeated sequences in DNA. Hundreds of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science, 161, 529-540 (1968).
Brook, J., McCurrach, M.E., and Harley, H.G. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 68: 799-808 (1992).
Bullock, P., Miller, J., and Botchan, M. Effects of poly [d (pGpT)•d (pApC)] and poly [d (pCpG)•d (pCpG)] repeats on homologous recombination in somatic cells. Mol. Cell. Biol. 6: 3948-3953 (1986).
Casky, C.T., Pizzuti A., Fu Y. H., Fenwick Jr R. G. and Nelson D. L. Triplet repeat mutations in human disease. Science 256: 784-789 (1992).
Chen, X., Mariappan, S.V.S., Catasti, P., Patliff, R., Moyzis, R.K., Laayoun, A., Smith, S.S., Bradbury, E.M. and Gupta, G. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: Structure and biological implications. Proc. Natl. Acad. Sci. USA 92: 5199-5203 (1995).
Churchill, G. A. Stochastic models for heterogeneous DNA sequences. Bull. Math. Biol. 51: 79-94 (1989).
Collins FS., Patrinos A., Jordan E., Chakravarti A., Gesteland R., and Walters L. New goals for the U.S. human genome project. Science 282: 682-9 (1998).
Cox, R., and Mirkin, M.S. Characteristic enrichment of DNA repeats in different genomes. Proc. Natl. Acad. Sci. USA 94: 5237-5242 (1997).
de Wind, N., Dekkeer, M., Berns, A., Radman, M., and te Riele, H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82: 321-330 (1995).
Debrauwere, H., Gendrel, C. G,. Lechat, S. and Dutreix, M. Differences and similarities between various tandem repeat sequences: Minisatellites and microsatellites. Biochimie 79, 577-586 (1997).
Deloukas, P. et al. A physical map of 30,000 human genes. Science 282: 744-746 (1998).
Dillon, E. K., de Boer, W. B., Papadimitriou, J. M., and Turbett, G. R. Microsatellite instability and loss of heterozygosity in mammary carcinoma and its probable precursors. British Journal of Cancer 76(2): 156-62 (1997).
Doolittle, R. F. Some reflections on the early days of sequence searching. Journal of Molecular Medicine 75: 239-241 (1997).
Dunham, I., Shimizu, N., Roe, B.A. and Chissoe, S. et al. The DNA sequence of human chromosome 22. Nature 402: 489-495 (1999).
Durrett, R. and Kruglyak, S. A new stochastic model of microsatellite evolution. J. Appl. Prob. 36: 621-631 (1999).
Eichler, E.E., Kunst, C.B., lugenbeel, K.A., et al. Evolution of the cryptic FMR1 CGG repeat. Nature Genetics 11:301-307 (1995).
Epplen, J. T., Buitkamp, J., Bocker, T., and Epplen, C. Indirect gene diagnoses for complex (multifactorial) diseases. Gene 159(1): 49-55 (1995).
Epplen, J.T., Kyas, A. and Maueler, W. Genomic simple repetitive DNAs are targets for differential binding of nuclear proteins. FEBS Letters 389: 92-95 (1996).
Filipski, J., Leblanc, J., Youdale, T., Sikorska, M. and Walker, P. R. Periodicity of DNA folding in higher order chromatin structures. EMBO J. 9: 1319-1327 (1990).
Filla, A., de Michele, G., Cavalcanti, F., Pianese, L., Monticelli, A., Campanella, G., and Cocozza, S. Therelationship between trinucleotide (GAA) repeat length and clinical features in Friedreich’s ataxia. Am. J. Hum. Genet. 59: 163-165 (1996).
Fishel, R., Lescoe, M.K., Rao, M.R.S., Garber, J., Kane, M., and Kolodner, R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027-1038 (1993).
Freudenreich, C.H., Stavenhagen, J.B. and Zakian, V.A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell. Biol. 17: 2090-2098 (1997).
Fu, Y.H., Kuhl, D.p., pizzuti, A., Pieretti, m. et al. Variation of the CGG repeat at the fragile X site results in genetic insability; resolution of the Sherman paradox. Cell 67: 1047-1058 (1991).
Gacy, A.M., Goellner, G.M., Spiro, C., ChenX., Gupta, G., Bradbury, E.M., Dyer, R.B., Mikesell, M.J., Yao, J.Z., Johnson, A.J., Richter, A., Melancon, S.B., and McMurray, C.T. GAA instability in Friedreich’s Ataxia shures a common, DNA-directed and intraallelic mechanism with other trinucleotide disease. Mol. Cell 1: 583-593 (1998).
Gardiner, K. Clonability and gene distribution on human chromosome 21: reflections of junk DNA content? Gene 205(1-2): 39-46 (1997).
Glaser, R. L., Thomas, G. H., Siegfried, E., Elgin, S. C. and Lis, J. T. Optimal heat-induced expression of the Drosophila hsp26 gene requires a promoter sequence containing (CT)n.(GA)n repeats. J. Mol. Biol. 211: 751-761 (1990).
Gordenin, D.A., Kunkel, T.A. and Resnick, M.A. Repeat expansion-all in a flap? Nature genetics 16: 116-118 (1997).
Green, P. Against a whole-genome shotgun. Genome Res. 7: 410-417 (1997).
Hamada, H., Petrino, M. G., and Kakunaga T. A novel repeated element with Z-DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79: 6465-6469 (1982).
Hammer, M. F., Spurdle, A. B., Karafet, T., Bonner, M. R., Wood, E. T., Novelletto, A., Malaspina, P., Mitchell, R. J., Horai, S., Jenkins, T., and Zegura, S. L. The geographic distribution of human Y chromosome variation. Genetics 145: 787-805 (1997).
Handerson E., Hardin C.C., Walk S.K., Tinoco Jr I., and Blackburn E.H. Telmeric DNA oligonucleotide from novel intramolecular structures containing guanine. guanine base pair. Cell 51: 899-908 (1987).
Henderson, S. T., and Petes, T. D. Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 2749-2757 (1992).
Hattori, M., Fujiyama, A. and Taylor, T.D. et al. The DNA sequence of human chromosome 21. Nature 405: 311-319 (2000).
Iordanis I. Arzimanoglou1, Gilbert F., and Hugh R. K. Barber. Microsatellite instability in human solid tumors. Cancer 82: 1808-1820 (1998).
Jakupciak, J.P. and Wells, R.D. Genetic instabilities in (CTG•CAG) repeats occur by recombination. The Journal of Biological Chemistry 274: 23468-23479 (1999).
Jankowski, C., Nasar, F. and Nag, D.K. Meiotic instability of CAG repeat tracts occur by double-strand break repair in yeast. Proc. Natl. Acad. Sci. USA 97, 2134-2139 (2000)
Jeffreys, A. J., Wilson, V., and Thein, S. L. Hypervariable “mini- satellite” region in human DNA. Nature 314 (7): 67-73 (1985).
Jones, C., Penny, L., and Mattina, T. Association of a chromosome deletion syndrome with a fragile site within the proto-oncogene CBL2. Nature 376: 145-149 (1995).
Jorde, L. B., Rogers, A. R., Bamshad, M., Watkins, W. S., Krako-wiak, P., Sung, S., Kere, J., and Harpending, H. C. Microsatellite diversity and the demographic history of modern humans. Proc. Natl. Acad. Sci. USA 94: 3100-3103 (1997).
Kalpazidou, S. L. Cycle Representations of Markov Processes. Springer-Verlag, 1994.
Kashi, Y., King, D. and Soller, M. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics 13: 74-78 (1997).
Koreth, J., O’Leary, J. J., and McGee, J. O’D. Microsatellites and PCR genomic analysis. [Review] Journal of pathology 178: 239-248 (1996).
Kovtun I.V. and McMurrary C.T. Trinucleotide expansion in haploid germ cells by gap repair. Nature Genetics 27: 407-411 (2001).
Kruglyak, S., Durrett, R.T., Schug, M.D. and Aquadro, C.F. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc. Natl. Acad. Sci. USA 95: 10774-10778 (1998).
Kuneler, P., Matsuo, K. and Schaffner, W. Pathological, physiological, and evolutionary aspects of short unsable DNA repeats in the human geome. Biol. Chem. Hoppe Seyler 376: 201-11 (1995).
Lander, E.S., Linton, L.M., Birren, B., et al. Initial sequencing and analysis of the human genome. Nature 409: 860-921 (2001).
Laura, O., Domenico P., Mario F., Cristina D., Amico, Andrea A., Calogero S., Anna C., Federica C., Caterina T., Laura D.M., Gio-vanna M., Renato M.C., and Alessandro C. Microsatellite instability in gastric cancer is associated with tumor location and family history in a high-risk population from tuscany. Cancer Research 57: 4523-4529 (1997).
Leach, F.S., Nicolaides, N.C., Papadopoulos, N., Liu, S., Jen, J., Parsons, R., Peltomaki, P., Sistonen, P., Aaltonen, L.A., Nystrom-Lahti M., Guan, X.Y., Zhang, J., Meltzer, P.S., Yu, J.W., Kao, F.T., Chen, D.J., Cerosaletti, K.M., Keith, Fournier, R.E., Todd, S., Lewis, T., Leach, R.J., Naylor, S.L., Weissenbach, J., Mecklin, J.P., Jarvinen, H., Petersen, G.M., Hamilton, S.R., Green, J., Jass, J., Watson, p., Lynch, H.T., Trent, J.M., de la Chapelle, A., Kinzler, K.W., and Vogelstein, B. Mutation of a mutS homolog in hereditary nonpolyposis B. Cell 75: 1215-1225 (1993).
Levinson, G., and Gutman, G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4: 203-221 (1987).
Li, W. The study of correlation structures of DNA sequences: a critical review. Computers Chem. 21:257-271 (1997).
Li, W. H. Molecular Evolution. Sinauer, Sunderland, MA. 1997.
Lothe, R. A. Microsatellite instability in human solid tumors. [Review] Molecular Medicine Today 3(2): 61-68 (1997).
Lyons-Darden, T. and Topal, M.D. Abasic sites induced triplet-repeat expansion during DNA replication in vitro. The Journal of Biological chemistry 274: 25975-25978 (1999).
Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., Lawton, M., Trottier, Y., Lehrach, H., Davies, S.W. and Bates, G.P. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493-506 (1996).
Manley, K., Shirley, T.L., Flaherty, L. and Messer, A. MSH2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature genetics 23: 471-473 (1999).
Marchenko, B. E., and Podgornaia, O. I. Mutation process in minisatellites. Tsitologiia 40(5): 455-466 (1998).
Maroof, M. A. S., Biyashev, R. M., Yan, G. P., Zhang Q., and Allard, R.W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity chromosome locations and population dynamics. Proc. Natl. Acad. Sci. USA 91: 5466-5470 (1994).
Maroteaux, l., Heilig, R., Dupret, D. and Mandel, J.L. Repetitive satellite-like sequences are present within or upstream from 3 avian protein-coding genes. Nucleic Acids Res. 11: 1227-1243 (1983).
Maurer, D.J., O’Callaghan, B.L. and Livingston, D.M. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 6617-6622 (1996).
Michel, B., Ehrlich, S.D. and Uzest, M. DNA double-strand breaks caused by replication arrest. EMBO J. 16: 430-438 (1997).
Miret, J.J., Pessoa-Brandao, L. and Lahue, R. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats inSaccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95: 12438-12443 (1998).
Moore, H., Greenwell, P.W., Liu, C.P., Arnheim, N. and Petes, T. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl. Acad. Sci. USA 96: 1504-1509 (1999).
Morimoto, R. Cells in stress: transcriptional activation of heat shock genes. Science 259; 1409-1410 (1993).
Nadir, E., Margali, H., Gallily, T., and Ben-Sasson, S.a. Microsatellites spreading in the human genome; Evolutionary mechanism and a possible selective advantage. Proc. Natl. Acad. Sci.USA 93: 6470-6475 (1996).
Nelson, D. L., and Warren, S. T. Trinucleotide repeat instability: when and where? Nature Genet. 4: 107-108 (1993).
Nowak, R. Mining treasures from “junk DNA”. Science 263(5147): 608-610 (1994).
Orgel, L.E., Crick, F.H., Sapienza, C., Selfish DNA. Nature 288(5792): 645-6 (1980).
Ornstein, R. L., Rein, R., Breen, D. L. and MacElroy, R. D. An optential function for the calculation of nucleic acid interaction energies: I, Base stacking. Biopolymers 17:2341-2360 (1978)
Paques, F., Leung, W.-Y. and Haber, J. E. Expansions and contractions in a tandem repeat induced by double-strandbreak repair. Mol. Cell. Biol. 18, 2045-2054 (1998).
Peltomaki, P., Lothe, R. A., Aaltonen, L. A., Pylkkanen, L., Nystrom-Lahti, M., Seruca, R., David, L., Holm, R., Ryberg, D., Haugen, A., et al. Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Research, 53(24): 5853-5855 (1993).
Peris, K., Onorati, M.T., Keller, G., Magrini, F., Donati, P., Muscardin, L., Hofler, H., Chimenti, S. Widespread microsatellite instability in sebaceous tumors of patients with the Muir-Torre syndrome. British Journal of Dermatology 137(3): 356-360 (1997).
Pickeral, O.K. and Boguski, M.S. Book Review : The Bioinformatics bookshelf: teach yourself computational biology? Cell 96: 451-455 (1999).
Pietrokovsky S. Bottazzi V. Schweigmann N. Haedo A. Wisnivesky-Colli C. Comparison of the blood meal size among Triatoma infestans, T. guasayana and T. sordida (Hemiptera: Reduviidae) of Argentina under laboratory conditions. Memorias do Instituto Oswaldo Cruz. 91(2): 241-2 (1996).
Radic M. Z., Lundgren, K., and Hamkalo, B. O. Curvature of mouse satellite DNA and condensation of heterochromatin. Cell 50: 1101-1108 (1987).
Ramakishana, W., Lagu, M. D., Gupta, V. S., and Ranjekar, P. K. DNA fingerprinting in rice using oligonucleotide probes specific for simple repetitive DNA sequences. Theor. Appl. Genet. 88: 402-406 (1994).
Ramel. C. Mini- and microsatellites. Environmental Health Perspectives 4:781-9 (1997).
Richard, G.F., Goellner, G.M., McMurray, C.T. and Haber, J.E. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. The EMBO Journal 19: 2381-2390 (2000).
Richards, R.I., Holman, K., Yu, S. and Sutherland, G.R. Fragile X syndrome unstable element, p(CCG)n, and other simple tandem repeat sequences are binding sites for specific nuclear proteins. Hum. Mol. Genet. 2: 1429-1435 (1993).
Rolfsmeier, M.L., Dixon, M.J. and Pessoa-Brandao, Luis. et al. Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae. Genetics 157: 1569-1579 (2001).
Rongwen, J., Akkaya, M. S., Bhagwat, A. A., Lavi, U., and Cregan, P. B. The use of microsatellite DNA markers for soybean genotype identification. Theor. Appl. Genet. 90: 43-48 (1995).
Roos, D.S. Bioinformatics—Trying to swim in a sea of data. Science 291: 1260-1261 (2001).
Rosenblatt, M. Markov Processes: Structure and Asymptotic Behavior. Springer-Verlag, 1971.
Saccone, S., Caccio, S., Kusuda, J., andreozzi, L. and Bernardi, G. identification of the gene-richest bands in human chromosomes. Gene 174: 85-94 (1996).
Sakamoto, N., Chastain, P.D., Parniewski. P., Ohshima, K., pandolfo, M., Griffith, J.D. and Wells, R.D. Sticky DNA: self-association properties of long GAA•TTC repeats in R•R•Y triplex structures from Friedreich’s Ataxia. Mol. Cell 3: 465-475 (1999).
Samadashwily, G.M., Raca, G. and Mirkin, S.M. Trinucleotide repeats affect DNA replication in vivo. Nature Genetics 17:298-304 (1997).
Sanchez-Cespedes, M., Rosell, R., Pifarre, A., Lopez-Cabrerizo, m.P., Barnadas, A., Sanchez, J.J., Lorenzo, J.C., Abad, A., Monzo, M., and Navas-Palacios, J.J. Microsatellite alterations at 5q21, 11p13, and 11p15.5 do not predict survival in non-small cell lung cancer. Clin. Cancer Res. 3(7); 1229-1235 (1997).
Sargent, R. G., Merrihew, R. V., Nairn, R., Adair, G., Meuth, M., and Wilson, J. H. The influence of a (GT) 29 microsatellite sequence on homologous recombination in the hamster adenine phosphoribosyl- transferase gene. Nucleic Acids Res. 24: 746-753 (1996).
Sawada, I., Schmid, L. W., Deka, N., Paulson, K.E. and Willard, C. Repetitive human DNA sequence. Cold Spring Harbor Symposia on Quantitative Biology 51:471-477 (1986).
Schweitzer, J.K. and Livingston, D.M. Destabilization of CAG trinucleotide repeat tracts by mismatch repair mutations in yeast. Hum. Mol. Gene. 6: 349-355 (1997).
Serikawa, T., Kuramoto T., Hilbert P., Mori M., Yamada J., Dubay C.J., Lindpainter K., Ganten D., Guenet J.L., Lathrop G.M. and Beckmann J.S. Rat gene mapping using PCR-analysed microsatellites. Genetics 131: 701-721 (1992).
Shibata, D., Peinado, M.A.., Ionov, Y., Malkhosyan, S. and Perucho, M. Genomic instability in repeated sequences is an early somatic event in colorectal tumourigenesis that persists after transoformation. Nature Genetics 6: 273-281 (1994).
Sia, E. A., Jinks-Robertson, S., and Petes, T. D. Genetic control of microsatellite stability. Mutation Research 383: 61-70 (1997).
Simonsen, B. T., Siegismund, H. R., and Arctander, P. Population structure of African buffalo inferred from mtDNA sequences and microsatellite loci: variation but low differentiation. Molecular Ecology 7: 225-237 (1998).
Sinden, R.R. HUMAN GENETICS ’99: TRINUCLEOTIDE REPEATS Biological implications of the DNA structures associated with disease-causing triplet repeats. Am. J. Hum. Genet. 64: 346-353 (1999).
Smith, G.P. Evolution of repeated DNA sequences by unequal crossover. Science 191(4227): 528-535 (1976).
Spiro, C., Pelletier, R., Rolfsmeier, M.L., Dixon, M.J., Lahue, R.S., Gupta, G., Park, M.S., Chen, X., Mariappan, S.V. and McMurray, C.T. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol. Cell. 4(6): 1079-85 (1999).
Strauss, B.S., Sagher, D., and Acharya, S. Role of proofreading and mismatch repair in maintaining the stability of nucleotide repeats in DNA. Nucleic Acids Res. 25:806-813 (1997).
Sutherland, G.R. and Richards, R.I. Simple tandem DNA repeats and human genetic disease. P. Natl. Acad. Sci. USA 92: 3636-3641 (1995).
Tautz, D. In: DNA fingerprint: State of the Science. Birkauser Verlag Basel, Switzerland, 21p (1993).
Tautz, D., and Renz, M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12:4127-4138 (1984).
Tautz, D., and Schlotterer. Simple sequences. Curr. Opin. Genet. Dev. 4: 832-837 (1994).
Tsuliyama, T., Becker, P. B., and Wu, C. ATP-dependent nucleosome disruption at a heat shock promoter mediated by binding of GAGA transcription factor. Nature 367: 525-532 (1994).
Venter, J.C., Adams, M.D., Sutton, G.G., et al. Shotgun sequencing of the human genome. Science 280: 1540-1542 91998).
Wahls, W. P., Wallace, L. J., and Moore, P. D. The Z-DNA motif d (TG) 30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture. Mol. Cell. Biol. 10: 785-793 (1990).
Waterston, R. and Sulston, J.E. The human genome project: reaching the finish line. Sciences 282: 53-54 (1998).
Weber, J. L., and Wong, C. Mutation of human short tandem repeats. Hum. Mol. Genet. 2: 1123-1128 (1993).
Willard, H. F., and Waye J. S. Hierarchical order in chromosome specific human alpha satellite DNA. Trends Genet. 3: 192-202 (1987).
Wong, A. K. C., Yee H. A., van de Sande J. H., and Rattner J. B. Distribution of CT-rich tracts is conserved in vertebrate chromosome. Chromosoma 99: 344-351 (1990).
Xu, W., Lin, L., Emson, P.C., Harrington, C.R. and Charles, I.G. Evolution of a homopurine-homopyrimidine pentanucleotide repeat sequence upstream of the human inducible nitric oxide synthase gene. Gene 204: 165-170 (1997).
Zu, L., Figueroa, K.P., Grewal, R. and paulst, S.M. Mapping of a new autosomal dominant spinocerebellar ataxia to chromosome 22. Am. J. Hum. Genet. 64: 594-599 (1999).
陳文華。雙核甘酸重複序列於人類第二十二對染色體的分佈及頻率。碩士論文。2000年。
陳心媛。酵母菌染色體雙核甘酸重複序列之分佈及頻率。碩士論文。2001年。
陳嫈嫈。人類Y染色體雙核甘酸重複序列之分佈及頻率及其與21、22條染色體之比較。
陳啟清、陳文華、陳嫈嫈。染色體22分子變異。2000年。
楊惠櫻。人類第二十一對染色體三核甘酸重複序列之分佈及頻率。碩士論文。2002年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top