跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 09:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊智龍
研究生(外文):Ching-Long Yang
論文名稱:臺灣地殼剪切波非均向性研究
論文名稱(外文):Crustal shear wave anisotropy in Taiwan
指導教授:饒瑞鈞饒瑞鈞引用關係
指導教授(外文):Ruey-Juin Rau
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系碩博士班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:115
中文關鍵詞:地殼非均向性剪切波的分離作用
外文關鍵詞:crustal anisotropyshear-wave splitting
相關次數:
  • 被引用被引用:10
  • 點閱點閱:704
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
本研究乃利用地震剪切波的分離作用(shear-wave splitting)來探討臺灣地區地殼地震非均向性(anisotropy)概況。其所產生的快波極化方向(fast polarization direction) 是跟大地應力方向、構造和斷層走向以及礦物排列方向有關,而快波和慢波之間分離時間差(delay time)則跟地殼的非均向性程度(degree of anisotropy)和裂隙的密度(crack density)有關 (Crampin, 1999),藉此我們可以瞭解區域的應力分佈以及監測應力的累積與釋放。我們採用了粒子運動分析(particle motion analysis)配合波形交互對比法(waveform cross-correlation method)(Rau et al., 2000),來分析臺灣短週期地震網自1991年更新以來,至1999年的地震資料,部分的站已處理至2000年5月。結果顯示臺灣地區地震非均向性的快波極化方向隨著各區域的地質環境不同而各有其特性;海岸平原大致上是跟GPS以及地質所得扇形之大地應力分佈相同;西部麓山帶以及海岸山脈有兩個方向,一為受大地應力,另一則為構造(斷層)或礦物排列所控制:中央山脈鄰近地區則受大地應力及礦物排列所影響。北部及東北部非均向性分佈反映了大地應力有順時鐘方向旋轉的趨勢,不過有些站的方向相當不一致,顯示其複雜的地質環境,需將其他影響非均向性的因素考慮在內。主要影響非均向性的三個因素:大地應力、局部性構造以及礦物排列在台灣皆可見到。分離時間差的範圍是0.01∼0.27s。
Crustal shear wave anisotropy is analyzed from local earthquakes recorded at the short-period seismic network in the Taiwan region. Through the property of seismic anisotropy, the purpose of this study is to investigate the origin of crustal anisotropy in Taiwan by analyzing splitting in local shear waves recorded at the seismic stations. The splitting changes the shape of the wave and can be characterized by a fast polarization direction f and a time delay dt between fast and slow shear waves. We measure the splitting parameters (f,dt) of local shear waves by applying particle motion analysis and cross-correlation method (Rau et al., 2000). Data coverage started since the upgrade of the Taiwan seismic network in 1991 up to 1999. The results show the fast polarization directions are complex. Stations in the Coastal Plain show consistent alignment of the fast polarization directions that are parallel to the maximum horizontal compressive stress directions interpreted from both GPS and geological measurements. Most stations east of the Coastal Plain display mainly two fast polarization directions: one parallel and the other perpendicular to the local structural trend or the preferential mineral alignment direction. The delay time is about 0.01 to 0.27s.
摘要Ⅰ
ABSTRACTⅡ
致謝Ⅲ
目錄Ⅳ
表目錄Ⅶ
圖目錄Ⅸ
第一章 前言1
1-1 地殼地震非均向性可用來解決什麼問題,其用途為何?1
1-1-1 地殼地震非均向性之源由?1
1-1-2 地震非均向性隨時間之變化3
1-2 臺灣有哪些人做過哪些有關地震非均向性的研究?4
1-3 用了哪些資料?5
1-4 我們用這些資料將回答哪些問題?6
第二章 臺灣地體構造、應力分布以及活斷層分佈及變質岩10
2-1 地震地體10
2-2 應力分佈11
2-3 活動層分佈 11
2-4 變質岩12
第三章 地震非均向性及地震剪切波分離之基本原理15
3-1 什麼叫非均向性?17
3-2 什麼叫剪切波分離?17
3-2-1 快剪切波極化方向(ψ)17
3-2-2 快、慢剪切波之分離時間差(δt)19
第四章 地震資料來源及處理流程22
4-1 有哪些資料及如何挑選?22
4-2 資料處理23
4-3 結果判釋及篩選23
第五章 研究方法 29
5-1 波形交互對比法(waveform cross-correlation method)29
5-1-1 t-test29
第六章 結果33
6-1 海岸平原34
6-1-1 民雄站(CHN2)34
6-1-2 六腳站(CHN7)35
6-1-3 義竹站(CHN8)35
6-1-4 嘉義市站(CHY)35
6-1-5 佳里站(SCL)37
6-1-6 台南市站(TAI)38
6-1-7 永康站(TAI1)40
6-1-8 台中市站(TCU)40
6-1-9 古坑站(WGK)40
6-1-10 南投站(WNT)41
6-1-11 大城站(WTC)41
6-2 西部麓山帶48
6-2-1 阿里山站(ALS)48
6-2-2 鞍部站(ANP)49
6-2-3 楠西站(CHN1)49
6-2-4 新化站(CHN3)50
6-2-5 草山站(CHN4)51
6-2-6 草嶺站(CHN5)51
6-2-7 南庄站(NST)52
6-2-8 三義站(NSY)52
6-2-9 甲仙站(SGS)53
6-2-10 台北市站(TAP)53
6-2-11 指南宮站(TWA)53
6-2-12 東山站(TWL)54
6-2-13 鯉魚潭站(TWQ1)54
6-2-14 大埔站(WTP)55
6-3 雪山山脈、中央山脈及宜蘭平原63
6-3-1 安塑站(EAS)63
6-3-2 秀林站(EHC)63
6-3-3 紅葉站(EHY)64
6-3-4 南澳站(ENA)64
6-3-5 牛鬥站(ENT)65
6-3-6 恆春站(HEN)65
6-3-7 宜蘭市站(ILA)66
6-3-8 南山站(NNS)66
6-3-9 三光站(NSK)66
6-3-10 枋寮站(SCZ)67
6-3-11 日月潭站(SML)67
6-3-12 三地門站(SSD)68
6-3-13 桃源站(STY)69
6-3-14 大武站(TAW)70
6-3-15 蘇澳站(TWC)70
6-3-16 新城站(TWD)70
6-3-17 內城站(TWE)73
6-3-18 魚池站(TYC)74
6-3-19 丹大站(WDT)74
6-3-20 合歡山站(WHF)74
6-3-21 玉山站(YUS)75
6-4 花東縱谷及海岸山脈87
6-4-1 成功站(CHK)87
6-4-2 西林站(ESL)88
6-4-3 花蓮市站(HWA)89
6-4-4 台東市站(TTN)89
6-4-5 卑南站(TWG)90
第七章 討論94
7-1 海岸平原94
7-2 西部麓山帶94
7-3 雪山山脈、中央山脈及宜蘭平原95
7-4 花東縱谷及海岸山脈96
第八章 結論與建議106
8-1 結論106
8-2 建議107
參考文獻110
自述115
Aster, R. C., P. M. Shearer, and J. Berger, Quantitative measurements of shear wave polarizations at the Anza Seismic Network, southern California: Implications for shear wave splitting and earthquake prediction, J. Geophys. Res., 95, 12,449-12,473, 1990.
Aster, R. C., P. M. Shearer, and J. Berger, Reply to Comment on “Quantitative measurements of shear wave polarizations at the Anza Seismic Network, southern California: Implications for shear wave splitting and earthquake prediction”, by S. Crampin et al., J. Geophys. Res., 96, 6415-6419, 1991.
Aster, R. C. and P. M. Shearer, Initial shear wave particle motions and stress constraints at the Anza Seismic Network, Geophys. J. Int., 108, 740-748, 1992.
Bernard, P., G. Chouliaras, A. Tznais, P. Bouin, J. Tellez, G. Stavrakakis, and K. Makropoulos, Seismic and electrical anisotropy in the Mornos delta, Gulf of Corinth, Greece, and its relationship with GPS strain measurements, Geophys. Res. Lett., 24, 2227-2230, 1997
Booth, D.C. and S. Crampin, Shear-wave polarization on a curved wave front at an isotropic free surface, Geophys. J. R. Astron. Soc., 83, 31-45, 1985a.
Booth, D.C., S. Crampin, R. Evans, and G. Roberts, Shear polarizations near the North Anatolian Fault, I. Evidences for anisotropy induced shear wave splitting, Geophys. J. R. Astron. Soc., 83, 61-73, 1985b.
Booth, D.C., S. Crampin, J. H. Lovell and J.-M. Chiu, Temporal changes in shear wave splitting during an earthquake swarm in Arkansas, J. Geophys. Res., 95, 11,151-11,164, 1990.
Bouin, M.-P. and P. Bernard, Analysis of strong-motion S wave polarization of the 15 October 1979 Imperial Valley earthquake, Bull. Seismol. Soc. Am., 84, 1770-1785, 1994.
Bouin, M.-P., J. Tellez, and P. Bernard, Seismic anisotropy around the Gulf of Corinth, Greece, deduced from three-component seismograms of local earthquakes and its relationship with crustal strain, J. Geophys. Res., 101, 5797-5811, 1996.
Brocher, T. M. and N. I. Christensen, Seismic anisotropy due to preferred mineral orientation observed in shallow crustal rocks in southern Alaska, Geology, 18, 737-740, 1990.
Chen, C. H. and H. J. Yen, A preliminary study on crustal anisotropy Chia-Nan area of Taiwan, TAO, 9, 4, 573-588, 1998.
Crampin, S., Seismic wave propagation through a cracked solid: Polarization as a possible dilatancy diagnostic, Geophys. J. R. Astron. Soc., 53, 467-496, 1978.
Crampin, S., An introduction to wave propagation in anisotropic media, Geophys. J. R. Astron. Soc., 76, 17-28, 1984.
Crampin, S., Evaluation of anisotropy by shear wave splitting, Geophysics, 50, 142-152, 1985.
Crampin, S., The fracture criticality of crustal rocks, Geophys. J. Int., 118, 428-438, 1994.
Crampin, S., Stress-forecasting: a viable alternative to earthquake prediction in dynamic Earth, Trans. R. Soc. Edin., Earth Sci., 89, 121-133, 1998.
Crampin, S., Calculable fluid-rock interactions, J. Geol. Soc., London, 156, 501-514, 1999.
Crampin, S., Developing stress-monitoring sites using cross-hole seismology to stress-forecast the tines and magnitudes of future earthquakes, Tectonophysics, 338, 233-245, 2001a.
Crampin, S., Shear-wave anisotropy: A new window into the crack-critical rockmass , Recorder, Special Issue, Can. Soc. Explor. Geophys., 26, 9-27, 2001b.
Crampin, S., Stress-forecasting earthquakes in a critical crust, Problems in Lithosphere Dynamics and Seismicity: Computational Seismology, Issue marking V. I. Keilis-Borok’s 80th birthday, eds. G. M. Molhan, V. M. Naimark & A. L. Levshin, 32, 98-112, 2001c.
Crampin, S., D. C. Booth, R. Evans, S. Peacock, and J. B. Fletcher, Changes in shear wave splitting at the Anza near the time of the North Palm Springs earthquake, J. Geophys. Res., 95, 11,197-11,212, 1990.
Crampin, S., D. C. Booth, R. Evans, S. Peacock, and J. B. Fletcher, Comment on “Quantitative measurement of shear wave polarizations at the Anza Seismic Network, southern California: Implications for shear wave splitting and earthquake prediction” by R. C. Aster, P. M. Shearer, and J. Berger, J. Geophys. Res., 96, 6403-6414, 1991.
Evans, R., Effects of the free surface shear wavetrains, Geophys. J. R. Astron. Soc., 76, 165-172, 1984.
Evans, J. R., B. R. Julian, G. R. Foulger, and A. Ross, Shear wave splitting from local earthquakes at the Geysers geothermal fields, California, Geophys. Res.Lett., 22, 501-504, 1995.
Gamar, F. and P. Bernard., Shear wave anisotropy in the Erzincan basin and its relationship with crustal strain, J. Geophys. Res., 102, 20,373-20,393, 1997.
Gledhill, K. R., Evidence for shallow and pervasive seismic anisotropy in the Wellington Region, New Zealand, J. Geophys. Res., 96, 21,503-21,516, 1991.
Gledhill, K. and G. Stuart, Seismic anisotropy in the fore-arc region of the Hikurangi subduction zone, New Zealand, Phys. Earth Planet. Inter., 95, 211-255, 1996.
Hu, J.-C., J. Angelier, J.-C. Lee, H.-T. Chu and D. Byrne, Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modeling, Tectonophysics, 255, 243-268, 1996.
Hu, J.-C., S.-B. Yu, J. Angelier and H.-T. Chu, Active deformation of Taiwan from GPS measurement and numerical simulations, J. Geophys. Res., 106, 2265-2280, 2001.
Kaneshima, S., Origin of crustal anisotropy: Shear wave splitting studies in Japan, J. Geophys. Res., 95, 11,121-11,133, 1990.
Kaneshima, S., H. Hito and M. Sugihara, Shear-wave polarization anisotropy observed in a rift zone in Japan, Tectonophysics, 157, 281-300, 1989.
Kern, H. and H.-R. Wenk, Fabric-related velocity anisotropy and shear wave splitting in rocks from the Santa Rosa mylonite zone, California, J. Geophys. Res., 95, 11,213-11,223, 1990.
Kreyszig, E., Introductory Mathematical Statistics, Principles and Methods, John Wiley and Sons, 470 pp, 1970.
Kuo, B.-Y., C.-C. Chen, and T. C. Shin, Split S waveforms observed in northern Taiwan: Implications for crustal anisotropy, Geophys. Res. Lett., 21, 1491-1494, 1994.
Leary, P.C., Y.-G. Li, and K. Aki, Observation and modeling of fault-zone fracture seismic anisotropy Ⅰ:P, SV and SH travel times, Geophys, J. R. Astron. Soc., 91, 461-484, 1987.
Miller, V. and M. Savage, Changes in seismic anisotropy after volcanic eruptions: evidence from Mount Ruapehu, Science, 293, 2231-2233, 2001.
Munson, C.G., C.H. Thurber, Y. Li, and P. G. Okubo, Crustal shear wave anisotropy in southern Hawaii: Spatial and temporal analysis, J. Geophys. Res., 100, 20,367-20,377, 1995.
Nicolas, A. and N.I. Christensen, Formation of anisotropy in upper mantle peridotites – A review, in: K. Fuchs and C. Froidevaux (Eds.), Composition, Structure and Dynamics of the lithosphere-Asthenosphere System, Geodynamics Series, 16, 111-123, American Geophysical Union, Washington, D.C., 1987.
Nuttli, O., The effect of the Earth’s surface on the S wave particle motion, Bull. Seismol. Soc. Am., 51, 237-246, 1961.
Peacock, S., S. Crampin, D. C. Booth, and J. B. Fletcher, Shear wave splitting in the Anza seismic gap southern California: Temporal variations as possible precursors, J. Geophys. Res., 93, 3339-3356, 1988.
Rau, R.-J., W.-T. Liang, Kao, H. and B.-S. Huang, Shear wave anisotropy beneath the Taiwan orogen, Earth and Planet. Sci. Lett., 177, 177-192, 2000.
Savage, M. K., W. A. Peppin, and U. R. Vetter, Shear wave anisotropy and stress direction in and near Long Valley caldera, California, 1979-1988, J. Geophys. Res., 95, 11,165-11,177, 1990.
Suppe, J., The active Taiwan mountain belt, In: J. P. Schaer and J. Rogers (Editors), The Anatomy of Mountain Ranges. Princeton Univ. Press, Princeton, N.J., 277-293, 1987.
Tadokoro, K. and M. Ando, Evidence for rapid fault healing derived from temporal changes in S wave splitting, Geophys. Res. Lett., 29, 10.1029/2001GL013644, 2002.
Tsao, S., T.C. Li, J.L.Tien, C.H. Chen, T.K. Liu and C.H. Chen, Illite crystallinity and fission-track ages along the east central cross-island highway of Taiwan, Acta Geol. Taiwan, 30, 45-64, 1992.
Wu, F. T., R.-J. Rau and D. H. Salzberg, Taiwan orogeny: Thin-skinned or lithospheric collision, Tectonophysics, 274, 191-220, 1997.
Yeh, Y.-H., E. Barrier, C.-H. Lin and J. Angelier, Stress tensor analysis in the Taiwan area from focal mechanism of earthquakes, Tectonophysics, 200, 267-280, 1991.
Zhang, Z. and S. Y. Schwartz, Seismic anisotropy in the shallow crust of the Loma Prieta segment of the San Andress fault system, J. Geophys. Res., 99, 9651-9661, 1994.
Zinke, J. C. and M. D. Zoback, Structure-related and stress-induced shear-wave velocity anisotropy: observations from microearthquakes near the Calaveras fault in central California, Bull. Seismol. Soc. Am., 90, 5, 1305-1312, 2000.
Zollo, A. and P. Bernard, S wave polarization inversion of the 15 October 1979, 23:19 Imperial Valley aftershock: Evidence for anisotropy and a simple source mechanism, Geophys. Res. Lett., 16, 1047-1050, 1989.
Zuniga, R., R. R. Castro, and T. Dominguez, Stress orientation and anisotropy based on shear-wave splitting observations in the Cerro Prieto Fault area, Baja California, Mexico, Pure Appl. Geophys., 144, 39-57, 1995.
林啟文、張徽正、盧詩丁、石同生、黃文正,臺灣活動斷層概論(第二版),五十萬分之一臺灣活動斷層分布圖說明書,經濟部中央地質調查所特刊第十三號,共122頁,2000。
何春蓀,臺灣地質概論:臺灣地質圖說明書,經濟部出版,臺灣,共118頁,1975。
何春蓀,臺灣地體構造的演變:臺灣地體構造圖說明書,經濟部出版,臺灣,共110頁,1982。
李錫堤,大地應力分析與弧陸碰撞對於台灣北部古應力場變遷之影響,國立臺灣大學地質學研究所博士論文,共358頁,1986。
梁文宗,利用地震S波的分離作用探討臺灣北部地殼之非均向性,國立臺灣大學海洋研究所碩士論文,共95頁,1990。
陳肇夏,臺灣的變質岩,經濟部出版,臺灣,共356頁,1998。
鄭世楠,台灣及其鄰近地區大地應力分佈的研究,國立中央大學地球物理研究所博士論文,1995。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top