跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 16:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊恆傑
研究生(外文):Heng-Ghieh Yang
論文名稱:直流式磁控濺鍍鋯及氮化鋯薄膜性質、結構與擴散阻障層應用之研究
論文名稱(外文):Properties, Structures of Zr and ZrNx Thin Films and their Applications for Diffusion Barriers By DC Magnetron Sputtering
指導教授:劉全璞
指導教授(外文):Chuan-Pu Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:172
中文關鍵詞:擴散阻障層氮化鋯濺鍍系統
外文關鍵詞:Diffusion BarrierZrNxZrSputtering System
相關次數:
  • 被引用被引用:30
  • 點閱點閱:1231
  • 評分評分:
  • 下載下載:331
  • 收藏至我的研究室書目清單書目收藏:1
中 文 摘 要
本研究主要提出過渡金屬ⅣA族之鋯(Zr)及其氮化物(ZrNx)薄膜,於銅(Cu)-矽(Si)基材料接觸系統之擴散阻障層應用的可行性評估。是故,研究過程之首要目標,即在瞭解Zr與ZrNx薄膜之基本濺鍍性質與結構特性,以及受到鍍膜參數之濺鍍功率、濺鍍距離、反應氮氣比率、基板偏壓、基板溫度與工作壓力等因素的相對影響。進一步則經由製程條件的適當控制,將符合原子整數計量比之低電阻率、多晶型式氮化鋯(ZrN)薄膜,應用於Cu-Si(SiO2)介面阻障系統中之擴散阻障層,並探討厚度不同與織構相異之ZrN薄膜,其高溫熱穩定性與阻障特性之差異。
實驗結果顯示,Zr及ZrNx薄膜於鍍膜過程中,經由濺鍍距離的有效縮減、以及適當數值之基板負偏壓的施加,可達到降低薄膜中雜質氧含量之效果,提昇薄膜之結晶性與電性表現。若控制Zr薄膜於較高工作壓力條件下鍍製,則薄膜中雜質氧含量與電阻率會有所提升,且晶體織構顯得較無方向性。
其次,於鋯基氮化物之研究上,可觀察到ZrNx薄膜之電阻率、元素含量與氮-鋯比率、表面型態,以及晶體織構型式等薄膜特性,皆隨鍍膜參數的改變而有明顯之相對影響。隨反應氮氣比率的增加,ZrNx薄膜之氮含量與氮-鋯比率皆有相對應的提昇,且其薄膜電阻率之變化呈現出N型的曲線走勢;於符合原子整數計量比ZrN薄膜之反應氮氣比率區域,ZrNx薄膜具有金黃色澤與最低值電阻率之特質。經由濺鍍功率、或者基板偏壓於正向數值的提昇,ZrNx薄膜之沈積速率將增加,且符合氮-鋯比率為1之反應氮氣比率會向較高之數值區域作偏移。於高反應氮氣比率之製程條件,或者當薄膜中氮-鋯比率高於1.2∼1.3之數值,ZrNx薄膜將成為高電阻率之半透明非晶質相。
經由基板溫度的施加,可有效改善ZrNx薄膜之結晶性質,使薄膜中雜質氧含量與電阻率有所降低,而晶粒大小則有些微的提昇。且隨基板溫度的持續增加,ZrNx薄膜織構將由ZrN(111)之主要晶體織構,逐漸形成偏向ZrN(200)之優選型態。隨鍍膜厚度的變化,ZrNx薄膜之元素成份並無明顯改變,且隨鍍膜厚度增加,薄膜呈現出起伏明顯與高粗糙度的變化趨勢。ZrNx薄膜之結晶性與晶粒大小,亦隨鍍膜厚度的增加而有所提昇。研究中經由鍍膜參數的控制,可分別獲得電阻率達102與125μΩcm之高度(002)晶體織構Zr與多晶型式ZrN薄膜。經由基板溫度的提昇,更可進一步降低ZrN之電阻率達47μΩcm。
由ZrN/Si系統之熱穩定性探討可知,ZrN薄膜與Si基板之間於900℃之高溫退火熱處理後,介面處並無原子內部擴散與反應發生,且ZrN薄膜除結晶性有小幅改善,以及片電阻數值有進一步減低之效應,其晶體織構也未有明顯改變。可證實ZrN薄膜本身與ZrN/Si系統同時具備高度的熱穩定性質。
利用符合原子整數計量比之低電阻率、多晶型式ZrN薄膜作為Cu-Si(SiO2)接觸介面間的擴散阻障層,所架構之Cu/ZrN/Si與Cu/ZrN/SiO2/Si阻障系統,經時間30 min及溫度700℃之真空退火處理,各薄膜層之介面區域並未有原子內部擴散與反應的發生。顯示出ZrN薄膜於700℃之高溫範圍仍具備相當良好之阻障特性。當退火溫度提昇至800℃,於Cu-ZrN介面位置開始有銅進入ZrN薄膜之內部擴散的現象產生。研究結果顯示:偏向ZrN(200)晶體織構型態之ZrN薄膜,於800℃高溫之阻障性質較差,可觀察到其所架構之阻障系統中有大量Cu-Si反應物生成相的出現,代表該阻障系統已經失效。而偏向ZrN(111)晶體織構型態之ZrN薄膜所架構之阻障系統,雖同樣於800℃高溫退火過程有Cu向ZrN薄膜內部之擴散現象,卻未觀察到有Cu-Si、Cu-Zr-Si等反應物生成於阻障系統中,且ZrN-Si介面間仍未有原子內部擴散之現象。然於900℃之退火條件下,於膜厚70 nm之相同(111)織構型態ZrN薄膜所架構之阻障系統中,則開始有Cu-Si、Cu-Zr-Si等反應物的生成,表示ZrN薄膜於鍍膜厚度上的縮減,的確有減低其阻障效果的影響。另外,同樣利用偏向ZrN(111)晶體織構型態之ZrN薄膜,為模擬金屬連線製程之擴散阻障層結構,所疊積之Cu/ZrN/SiO2/Si阻障系統,其熱穩定性同樣可達約800℃。且於900℃之高溫退火過程,仍無反應物生成相出現於阻障系統中。
各阻障系統經由片電阻值的量測、XRD的成相分析、SEM表面型態的觀察與AES元素縱深分佈分析之結果相互對應,可大致推論出多晶型式ZrN薄膜之擴散阻障層失效過程為:經由800℃之退火處理過程,銅利用Cu-ZrN介面間之ZrN晶界或缺陷位置逐漸擴散進入ZrN薄膜結構中,且隨熱處理溫度與時間的提昇,其擴散的深度與數量持續增加,當完全貫穿ZrN薄膜後,在高溫之誘導下,開始於ZrN-Si介面處與Si有反應物的生成與成長,且Si亦可經由銅於ZrN薄膜中已形成之貫穿路徑向上擴散,因此可觀察到Cu-Si或者Cu-Zr-Si等反應物生成於阻障系統表面。
經由實驗之結果證實,符合原子整數計量比之低電阻率、多晶型式ZrN薄膜,的確具有應用於Cu-Si(SiO2)接觸系統之擴散阻障層的可行性。
Abstract
The main objective of this study is to assess the viability of the application of Zr and ZrNx thin films to the contact systems of current copper metallization technology as diffusion barriers. Thereby, we firstly study the dependence of the fundamental properties and structures of Zr and ZrNx thin films on sputtering parameters, including applied power, substrate-to-target (DT,Sub) distance, N2/Ar+N2 ratio, substrate bias (VBias), substrate temperature and working pressure. Subsequently, the ZrNx thin films of best quality with polycrystalline, low resistivity and stoichemetry are applied as the diffusion barriers in the interfaces of Cu-Si(SiO2) systems. The thermal stability and failure mechanisms are discussed in terms of various textures and film thickness.
Experimental results reveal that the oxygen content of both Zr and ZrNx thin films can be significantly reduced and thus the corresponding crystallinity and electrical properties can be enhanced by reducing the DT,Sub distance and appropriate VBias during sputtering.
In the investigation of the characteristics of Zr-based nitride films by sputtering, it is found that the processing parameters greatly affect its resistivity, composition, surface morphology and crystal textures. The N/Zr ratio in the sputtered ZrNx films increases as N2/Ar+N2 ratio in the carrier gas while the resistivity curves exhibit the trend analogous to the letter N - i.e. one local maximum and local minimum. The local minimum point corresponds to the stoichemetric ZrN films. The deposition rate increases as applied power and positive VBias, whereas the N2/Ar+N2 ratio corresponding to stoichemetric ZrN films shifts to higher ratio compared to negative VBias. The resistivity of ZrNx films increases rapidly after the N/Zr ratio of 1.2∼1.3 and the films turn to semi-transparent, amorphous and high-resistive phases.
Upon heating the Si substrates during sputtering, the decreases of oxygen content and the increases of average grain size result in the decreases of film resistivity. In addition, the film texture varies toward (200) textures. The larger film thickness can increase the average grain size and hence improving the film resistivity. The optimum resistivities for Zr and ZrNx films sputtered at RT are 102 and 125μΩcm, respectively. The resistivity of ZrNx film can be further reduced to 47μΩcm sputtered at 275ºC.
Upon heating ZrN/Si up to 900ºC, except the improvement of crystallinity and thus resistivity, no chemical reactions or atomic inter-diffusions are found at the interfaces, indicative of high thermal stability in ZrN and ZrN/Si materials.
Regarding the properties of stoichemetric ZrN films as the diffusion barriers in Cu-Si(SiO2) systems, no chemical reactions or atomic inter-diffusions are observed upon annealing up to 700ºC for 30 minutes. When the temperature is increased to 800ºC, Cu starts diffusion into ZrN films and the diffusion rate is texture dependent. While significant amount of copper silicide is found at the surface at this temperature from the sample of (200) textures, the slow diffusion rate of Cu inter-diffusion into ZrN of (111) textures does not reach the ZrN/Si interface for 30 minutes and the copper silicide is not induced yet even at 900ºC. However, the film thickness reduces from 120nm to 70nm, reactants of Cu-Si and Cu-Zr-Si are found. The additional dielectric layer of SiO2 introduced between Si and ZrN is found to be no effect on the barrier properties.
The proposed failure mechanism from the analysis of sheet resistance, X-ray diffraction, scanning electron microscope and depth profiles of Auger electron spectroscopy is that Cu atoms diffuse into ZrN films through defects or grain boundaries at 800ºC, followed by the formation of Cu-Si reactants at the ZrN/Si interfaces. Meanwhile, Si diffuses upwards via the routes created by Cu atoms and thus Cu-Si or Cu-Zr-Si compounds can be observed at the surfaces as well.
In conclusion, it is verified through extensive experiments that the properties of stoichemetric, polycrystal and low-resistive ZrN films are superior for the application of the diffusion barriers in Cu-Si(SiO2) systems.
總 目 錄
第一章 前言與研究目的…………………………………………………………...1
1-1 前言……………………………………………………………………….1
1-2 研究目的………………………………………………………………….5
1-3 發表文獻………………………………………………………………...10
第二章 理論基礎………………………………………………………………….11
2-1 直流磁控濺鍍…………………………………………………………...11
2-1.1 濺鍍原理………………………………………………………..11
2-1.2 直流輝光放電…………………………………………………..12
2-1.3 反應性濺鍍……………………………………………………..13
2-1.4 薄膜成長………………………………………………………..14
2-1.5 薄膜成長特性與製程參數之關係……………………………..15
2-2 銅金屬導線……………………………………………………………...21
2-2.1 電阻-電容時間延遲…………………………………………….21
2-2.2 銅之後段金屬連線製程發展…………………………………..21
2-3 擴散阻障層……………………………………………………………...24
2-3.1 擴散阻障層的定義……………………………………………..24
2-3.2 擴散阻障層之種類……………………………………………..25
2-3.3 擴散阻障層之發展……………………………………………..26
2-4 鋯及氮化鋯文獻回顧…………………………………………………...30
2-4.1 鋯及氮化鋯基本性質…………………………………………..30
2-4.2 鋯基材料之鍍膜性質與阻障特性……………………………..31
第三章 實驗方法與步驟………………………………………………………….38
3-1 實驗材料………………………………………………………………...38
3-2 實驗設備………………………………………………………………...39
3-2.1 濺鍍系統………………………………………………………..39
3-2.2 乾式熱氧化系統………………………………………………..39
3-2.3 真空退火系統…………………………………………………..39
3-3 實驗流程………………………………………………………………...42
3-3.1 鋯及氮化鋯薄膜濺鍍製程之探討……………………………..42
3-3.2 氮化鋯薄膜之阻障性質探討…………………………………..43
3-4 分析設備………………………………………………………………...49
3-4.1 薄膜厚度分析…………………………………………………..49
3-4.2 薄膜電性分析…………………………………………………..50
3-4.3 EPMA 薄膜組成元素含量分析……………………………….51
3-4.4 AES 薄膜表面、縱深元素成份分析………………………….52
3-4.5 Powder XRD 薄膜成相及織構分析…………………………...53
3-4.6 GIAXD 薄膜成相及晶體結構分析…………………………...54
3-4.7 SEM 薄膜表面及縱深型態分析………………………………55
3-4.8 TEM 薄膜微結構分析…………………………………………56
3-4.9 AFM 薄膜表面型態與粗糙度分析……………………………57
3-4.10 RBS 薄膜成份定量分析……………………………………….58
第四章 實驗結果與討論………………………………………………………….59
4-1 濺鍍鋯薄膜之性質與結構……………………………………………...59
4-1.1 濺鍍距離之影響………………………………………………..59
4-1.2 基板偏壓之影響………………………………………………..60
4-1.3 工作壓力之影響………………………………………………..62
4-1.4 基座旋轉速率之影響…………………………………………..63
4-2 濺鍍氮化鋯薄膜之性質與結構………………………………………...73
4-2.1 反應氮氣比率與濺鍍功率之影響……………………………..73

4-2.2 濺鍍距離之影響………………………………………………..78
4-2.3 基板偏壓之影響………………………………………………..80
4-2.4 反應氮氣比率與基板偏壓之影響……………………………..84
4-2.5 基板溫度之影響………………………………………………..86
4-2.6 ZrN鍍膜厚度之影響…………………………………………...88
4-2.7 ZrN薄膜之熱穩定性探討……………………………………...90
4-3 氮化鋯薄膜之阻障性質……………………………………………….130
4-3.1 銅-矽介面之熱穩定性探討…………………………………...130
4-3.2 織構型態對ZrN薄膜之阻障性質影響……………………….132
4-3.3 薄膜厚度對ZrN薄膜之阻障性質影響…………………….…135
4-3.4 Cu/ZrN/SiO2/Si阻障系統之熱穩定性探討…………………..137
4-3.5 ZrN擴散阻障層之失效機制………………………………….139
第五章 結論……………………………………………………………………...164
參考文獻………………………………………………………………………….167
參 考 文 獻

1.積體電路分析量測技術的現況與未來發展
潘扶民,毫微米通訊,Vol. 6,No. 3 (1999).

2.矽半導體元件中之金屬導線製程簡介
曾偉志,金屬工業,Vol. 33,No. 3,96 (1999).

3.Low Dielectric Constant Materials for Interlayer Dielectric Applications
S. P. Murarka, Solid State Technology, 39(3), 83 (1996).

4.電遷移效應對銅導線可靠度之影響
吳文發、秦玉龍,毫微米通訊,Vol. 6,No. 1,17 (1999).

5.Future Interconnect Technologies and Copper Metallization
X. W. Lin & D. Pramanik, Solid State Technology, 10, 63 (1998).

6.Thermal Stability of On-Chip Copper Interconnect Structures
R.J. Gutmann, T. P. Chow, A. E. Kaloyeros, W. A. Lanford & S. P. Murarka
Thin Solid Films, 262, 177 (1995).

7.Evaluation of a Copper Metallization Process and the Electric characteristics of Copper interconnected Quarter-micron CMOS
N. Awaya., H. Inokawa, E. Yamamoto, Y. Okazaki, M. Miyake, Y. Arita & T. Kobayashi
IEEE Trans. Electron Devices, 43, 1206 (1996).

8.Electromigration characteristics of copper interconnects
J. Tao, N. W. Cheung & C. Hu, IEEE Electron Device Letters., Vol 14, 249 (1993).

9.Room-Temperature oxidation of Silicon in the Presence of Cu3Si
C. S. Liu & L. J. Chen, Thin Solid Films, 262, 187 (1995).

10.Interfacial Reactions of Ultrahigh-Vacuum-Deposited Cu Thin Films on Atomically Cleaned (111)Si. I. Phase Formation and Interface Structure
C. S. Liu & L. J. Chen, J. Appl. Phys., 74, 5001 (1993).

11.銅製程之擴散阻障層
吳文發、黃麒峰,毫微米通訊,Vol. 6,No. 4,30 (1999).

12.Dielectric Degradation of Cu/SiO2/Si Structure During Thermal Annealing
J. C. Chiou, H. I. Wang & M. C. Chen, J. Electrochem. Soc., 143, 990 (1996).

13.應用於先進積體電路之低介電常數材料
鄭建星、陳貞夙,電子月刊,Vol. 6(11),116 (2000).

14.雙鑲嵌結構製作技術及面臨之挑戰
劉繼文,電子月刊,Vol. 6,No. 8,88 (2000).

15.Study of A New Low Dielectric Constant Material (K<2): Microstructure, Electrical Properties and Mechanical Properties
B. Zhao & M. Brongo, Mat. Res. Soc. Symp. Proc., Vol. 564, 485 (1999).

16.Thermal Stability of Hafnium and Titanium Nitraide Diffusion Barrier in Multilayer Contacts to Silicon
I. Sun, Maenpa M-A, Nicolet & M. Lumoajarvi, J. Electrochem. Soc., 103, 1215 (1983).

17.Study of crystal orientation in Cu film on TiN layered structures
K. Abe, Y. Harada & H. Onoda: J. Vac. Sci & Technol. B17, 1464 (1999).

18.Diffusion Barrier Properties of ZrN Films in The Cu/Si Contact Systems
M. Takeyama, A. Noya & K. Sakanishi: J. Vac. Sci. Technol., B18, No. 3, 1333 (2000).

19.Characterization and Modeling of Electromigration Failures In Multilayered Interconnects and Barrier Layer Materials
J. Tao, N. W. Cheung & C. Hu, IEEE Trans. Electron Devices., Vol. 43, 1819 (1996).

20.Reactive Diffusion and Phase Equilibria in The V-C, Nb-N, Ta-C and Ta-N Systems
H. Wiesenberger, W. Lengauer & P. Ettmayer, Acta. Mater., Vol. 46, No. 2, 651 (1998).

21.Ultrathin/Liners for Gigascale Copper Metallization
A. E. Kaloyeros & E. Eisenbraun, Anuu. Rev. Mater. Sci., 30, 363 (2000).

22.Study On Preparation Conditions of High-Quality ZrN Thin Films Using a Low-Temperature Process
H. Yanagisawa, K. Sasaki, Y. Abe, M. Kawamura & S. Shinkai
Jpn. J. Appl. Phys., Vol.37, 5714 (1998).

23.銅製程之擴散阻障層的發展與挑戰
楊恆傑、鐘鴻欽、劉全璞,工業材料,Vol. 177,150 (2001).

24.碳化鈦及氮化鈦薄膜在Si(100)基板之磊晶成長
許華偉,國立清華大學材料科學與工程學系,博士論文(1998).

25.氮化鈦薄膜濺鍍之研究
王起明,國立清華大學材料科學與工程學系,碩士論文(1996).

26.An Introduction to Gas Discharge
A. M. Howwastson, Pergamon Press, Chapter. 4, 84 (1976).

27.Glow Discharge Processes
B. Chapman, John Willwy & Son, Inc. N. Y., Chapter. 6, 178 (1980).

28.濺鍍鉭基薄膜的相轉變機制與在銅金屬化處理之擴散阻障層性質研究
陳松德,逢甲大學材料科學研究所,碩士論文(1999).

29.Evaluation of The Capability for Ta-N System as a Diffusion Barrier In Copper Interconnection
K. L. Lin, National Tsing Hua University, Master Thesis(1999).

30.Diffusion Barriers in Thin Films
M. A. Nicolet, Thin Solid Films, 52, 415 (1978).

31.濺鍍氮化鋯擴散阻礙層特性之研究
楊春美,國立中山大學材料科學研究所,碩士論文(2000).

32.Application of Equilibrium Thermodynamics To The Development of Diffusion Barriers for Copper Metallization
C.E. Ramberg, E. Blanquet, M. Pons, C. Bernard & R. Madar
Microelec. Eng. 50, 357 (2000).

33.Comparative Study of Tantalum and Tantalum Nitrides (Ta2N and TaN) as A Diffusion Barrier for Cu Metallization
K. H. Min, K. C. Chun & K. B. Kin, J. Vac. Sci. Technol., B 14(5), 3263 (1996).

34.Evaluation of Amorphous (Mo,Ta,W)-Si-N Diffusion Barriers for Si-Cu Metallization
J. S. Reid, E. kolawa, R. P. Ruiz & M. A. Nicolet, Thin Solid Films, 236, 319 (1993).

35.Ta-Si-N as A Diffusion Barrier Between Cu and Si
C. Lee & Y. H. Shin, Materials Chemistry and Physics., 57, 17 (1998).

36.The Effects of Si Addition on The Structure and Mechanical Properties of ZrN Thin Films Deposited By R.F. Reactive Sputtering Method
T. Mae, M. Nose, M. Zhou, T. Nagae & K. Shimamura
Surface and Coatings Tecnology, 142, 954 (2001).

37.The Effects of Cu Diffusion In Cu/TiN/SiO2/Si Capacitors
M. Y. Kwak, D. H. Shin, T. W. Kang & K. N. Kim
Jap. J. Appl. Phys., Vol. 38, 5792 (1999).

38.Properties of reactively sputtered WNx as Cu diffusion barrier
B. S. Suh, Y. J. Lee, J. S. Hwang & C. O. Park, Thin Solid Films., Vol. 348, 299 (1999).

39.Thermal Stability of A Cu/Ta Multilayer: An Intriguing Interfacial Reaction
H. Jeong; Kwon & K. Won, Acta Material., Vol. 47, 3965 (1999).

40.氮化鉭擴散阻障層之製備與特性研究
張景鈞,國立成功大學材料科學及工程學系,碩士論文(2001).

41.Nanostructured Ta-Si-N Diffusion Barriers for Cu Metallization
Dong Joon Kim & Yong Tae Kim, J. Appl. Phys., Vol. 82, No. 10, 4847 (1997).

42.Effects of Composition and N2 Plasma Treatment on The Barrier Effectiveness of Chemically Vapor Deposited WSix Films
M. T. Wang, M. T. Chuang, L. J. Chen & M. C. Chen, J. Vac. Sci. Technol., B18, 1929 (2000).

43.Semiconductor Devices, Materials, and Processing - Characterization of Sputtered Tantalum Carbide Barrier layer for Copper Metallization
H. Y. Tasi, S. C. Sun & S. J. Wang, J. Electrochem. Soc., Vol. 147, 2766 (2000).

44.Diffusion Barrier Properties of Single- and Multilayered Quasi-Amorphous Tantalum Nitride Thin Films Against Copper Penetration
G. S. Chen & S. T. Chen, J. Appl. Phys., Vol. 87, 8473 (2000).

45.Evaluation of HfN Thin Films Considered as Diffusion Barriers in the Al/HfN/Si System
R. Nowak & C. L. Li, Thin Solid Films, 305, 297 (1997).

46.Epitaxial Growth of HfN Film and Sequential Single-Oriented Growth of Al/HfN Bilayered Film on (001) and (111)Si
S. Shinkai & K. Sasaki, Jpn. J. Appl. Phys., Vol. 38, 3646 (1999).

47.Evaluation of Tantalum Silicide Sputtering Target Materials for Amorphous Ta–Si–N Diffusion Barrier for Cu Metallization
E. Ivanov, Thin Solid Films, 332, 325 (1998).

48.Barrier Properties of Very Thin Ta and TaN Layers Against Copper Diffusion
M. T. Wang, C. Y. Lin & M. C. Chen, J. Electrochem. Soc., Vol. 145, 2538 (1998).

49.Morphology of TiSi2 and ZrSi2 on Si(100) and (111) Surfaces
C. A. Sukow & R. J. Nemanich, J. Mater. Res., Vol. 9, No. 5, 1214 (1994).

50.Solid-Phase Reaction and Crystallographic Structures in Zr/Si Systems
T. Yamaichi, S. Zaima, K. Mizuno, H. Kitamura, Y. Koide & Y. Yasuda
J. Appl. Phys., 69(10), 7050 (1991).

51.Realization of Cu(111)Single-Oriented State on SiO2 By Annealing Cu-Zr Film and The Thermal Stability of Cu-Zr/ZrN/Zr/Si Contact System
K. Sasaki, H. Miyake, S Shinkai,, Y. Abe & H. Yanagisawa
Jpn. J. Appl. Phys., Vol. 40, 4661 (2001).

52.Thermally Stable ZrN/Zr/N-GaN Ohmic Contacts
S. D. Wolter, B. P. Luther, S. E. Mohney, R. F. Karlicek & R. S. Kern
Electrochemical and Solid-State Letters, 2(3), 151 (1999).

53.Structure, Electrical and Chemical Properties of Zirconium Nitride Films Deposited By DC Reactive Magnetron Sputtering
D. Wu, Z. Zhang, W. Fu, X. Fan & H. Guo, Appl. Phys., A64, 593 (1997).

54.Comparison of TiN, ZrN and CrN Hard Nitride Coatings: Electrochemical and Thermal Oxidation
I. Milosev, H. H. Strehblow & B. Navinsel, Thin Solid Films, 303, 246 (1997).

55.Material Properties of a ZrNx Film on Silicon Prepared by Ion-Assisted Deposition Method
S. Horita, T. Tujikwa, H. Akahori, M. Kobayashi & T. Harta
J. Vac. Sci. Technol., A11(5), 2452 (1993).

56.Low-Temperature Thermometer Using Sputtered ZrNx Thin Film
T. Yotsuya, M. Yoshitake & T. Kodama, Cryogenics, Vol. 37, 817 (1998).

57.Properties of Superconducting ZrN Thin Films Deposited by DC Reactive Magnetron Sputtering
K. Tanabe, H. Asano, Y. Katoh & O. Michikami, Jpn. J. Appl. Phys., Vol. 26, No. 5, L570 (1987).

58.Effect of Microstructure on Diffusion Barrier Capability of RF-Sputtered Titanium and Zirconium Nitride Films
S. Maruno. P. Jin & I. Sakamoto, Defect and Diffusion Forum, Vol. 95-98, 667 (1993).

59.Electronic Structure and Chemical Characterization of Ultrathin Insulating Films
J. M. Sanz, L. Soriano, P. Prieto, G. Tyuliev, C. Morant & E. Elizalde
Thin Solid Films, 332, 209 (1998).

60.In VLSI Electronics Microstructure Science
M. A. Nicolet & S. S. Lua, New York, 329 (1983).

61.Study on Preparation Conditions of High-Quality ZrN Thin Films Using a Low-Temperature Process
H. Yanagisawa, K. Sasaki, Y. Abe, M. Kawamura & S. Shinkai
Jpn. J. Appl Phys., Vol.37, 5715 (1998).

62.Diffusion Barrier Properties of ZrN films In The Cu/Si Contact Systems
M.B. Takeyama, A. Noya & K. Sakanishi, J. Vac. Sci. Technol. B 18, 1333 (2000).

63.Analysis of The Oxidation Kinetics and Barrier Layer Properties of ZrN and Pt/Ru Thin Films for DRAM Applications
H.N. Al-Sharef, X. Chen, D.J. Lichtenwalner & A.I. Kingon, Thin Solid Films 280, 265 (1996).

64.ZrN Diffusion Barreir in Aluminum Metallization Schemes
L. K. Elbaum, M. Wittmer, C. Y. Ting & J. J. Cuomo, Thin Solid Films, 104, 81 (1983).

65.A Comparative Study of the Diffusion Barrier Properties of TiN and ZrN
M. Ostling, S. Nygren & C. S. Petersson, Thin Solid Films, 145, 81 (1986).

66.Epitaxial Growth of Highly Crystalline and Conductive Nitride Films by Pulsed Laser Deposition
M. B. Lee, M. Kawasaki, M. Yoshimoto, M. Kumagai & H. Koinuma
Jpn. J. Appl. Phys., Vol. 33, 6308 (1994).

67.Influence of Ambient Pressure on the Properties of Zirconium Nitride Thin Films in Ion Beam Assisted Deposition
Y. Gotoh, T. Shiigi, M. Nagao, H. Tsuji & J. Ishikawa, IEEE, 1125 (1999).

68.Effects of Nitrogen Pressure and Ion Flux on The Properties of DC Reactive Magnetron Sputtered Zr-N Films
S. Inoue, K. Tominaga, R. P. Howson, & K. Kusaka
J. Vac. Sci. Technol., A13(6), 2808 (1995).

69.Nitrogen and Oxygen Transport and Reactions During Plasma Nitridation of Zirconium Thin Films
L. Pichon, A. Straboni, T. Girardeau & M. Drouet, J. Appl. Phys., Vol. 87, 925 (2000).

70.Vacuum Arc Deposition and Microstructure of ZrN-Bases Coatings
V. N. Zhitomirsky, I. Grimberg, R. L. Boxman. N. A. Travitzky, S. Goldsmith & B. Z. Weiss
Surface and Coatings Technology, 94-95, 207 (1997).

71.Structural Analysis of Zr-N and Ti-N Films Prepared By Reactive Plasma Beam Deposition
P. Panjan, B. Navinsek, A. Zabkar, V. Marinkovic, D. Mandrino & J. Fiser
Thin Solid Films, 288, 233 (1993).

72.Production of Stable and Metastable Phases of Zirconium Nitrides by NH3 Plasma Nitridation and by Double Ion Beam Sputtering of Zirconium Films
A. Straboni, L. Pichon & T. Girardeau, Surface and Coatings Technology, 125, 100 (2000).

73.Application of Amorphous Cu-Zr Binary Alloy as A Diffusion Barrier In Cu/Si Contact Systems
M. Takeyama, S. Kagomi, A. Noya, K. Sakanishi & K. Sasaki, J. Appl. Phys. 80, 569 (1996).

74.Lattice Match: An Application To Heteroepitaxy
A. Zur & T. C. McGill, J Appl. Phys., Vol. 55, 378 (1984).

75.Preparation of A Contract System With A Single-Oriented (111)Al Overlayer by Interposing A Thin ZrN/Zr Bilayered Barrier Applicable to Sub-0.25-μm Design Rule
H. Miyake, H. Yanagisawa, K. Sasaki, S. Shinkai & Y. Abe, Jpn. J. Appl. Phys., Vol. 40, 4193 (2001).

76.Reactively Sputtered ZrN Used as an Al/Si Diffusion Barrier In a Zr Contact To Silicon
M. Ostling, S. Nygren, C. S. Petersson, H. Norstrom & R. Buchta, J. Vac. Technol., A2, 281 (1984).

77.Single-Oriented Growth of (111) Cu Film on Thin ZrN/Zr Bilayered Film for ULSI
H. Yanagisawa, K. Sasaki, H. Miyake & Y. Abe, Jpn. J. Appl. Phys., Vol. 39, 5987 (2000).

78.材料分析
汪建民主編,中國材料科學學會(1998).

79.Transmission Electron Microscopy
D. B. Williams & C. B. Carter, Plenum, Chapter. 9, 131 (1996).

80.A Study of Preferred Orientation of Vanadium Nitride and Zirconium Nitride Coatings on Silicon Prepared by Ion Beam Assisted Deposition
C. H. Ma, J. H. Huang & H. Chen, Surface and Coatings Technology, 133-134, 289 (2000).

81.Agglomeration of Cu Electroplating Seed Layers On Ultra-Thin Ta, Ta1-XNX, Ta1-XOX, Contaminated Ta, and Composite Ta/Ta1-XNX Diffusion Barrier
J. W. Hartman, Helen Yeh, H. A. Atwater & Imran Hashim
Mat. Res. Soc. Symp. Proc., Vol. 564, 257 (1999).

82.Ambient Dependence of Agglomeration Stability of Cu/Ta Films
J. W. Hartman, H. A. Atwater, Imran Hasim, Barry Chin & Fusen Chen
Mat. Res. Soc. Symp. Porc., Vol.514, 303 (1998).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊