跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭佩菁
研究生(外文):Pei-Ching Cheng
論文名稱:熔融材料製程中兩相流之流場解析研究
論文名稱(外文):The Applications of Two Phase Flow Simulation to Melting Processing of Materials
指導教授:黃文星黃文星引用關係
指導教授(外文):W. S. Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:98
中文關鍵詞:流場解析熔融還原煉鐵製程
外文關鍵詞:transient flowSOLA-MACsmelt reduction process
相關次數:
  • 被引用被引用:5
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本研究發展出一熔融還原煉鐵製程中氣-液兩相之流場解析系統,並以水模中氣體底吹之流動現象進行解析。本研究所使用之解析計算核心模組是以能處理具自由表面暫態流體流動的數學模擬技術SOLA - MAC為基本理論基礎,結合質量守恆方程式及動量守恆方程式加上適當的邊界條件處理,來計算氣-液兩相交互影響之流場解析。

建立之數學模組被用以模擬熔融還原爐系統,本研究測試在圓柱爐體系統中氣體底吹現象,觀察其氣體上浮時如何引導鐵水流動;而鐵水之流動又如何影響氣體上浮之方式。將模擬結果與水模實驗進行比對可發現氣泡釋放頻率越高;即流量越大,連續氣泡追撞的情形越明顯,氣泡之終端速度也越快,表面之擾動情形也與其成對應關係。
This thesis proposes a program to simulate the gas-liquid two phase flow in smelt reduction process, and would analysis the fluid flowing phenomena induced by bottom gas injection process of water mold. The core module is based on computational fluid dynamics technique-- SOLA-MAC which can deal with the transient flow with free surface, and then incorporated with the continues equation and Navier-stokes Momentum equations. The program which is applied the proper boundary condition to can modeling the fluid flow phenomena which the gas and liquid phases will affect each other.

The developed mathematical model is then tested on a smelting reduction process, and the furnace system is a cylinder with gas blowing from the center of the bottom. The influence between fluid flowing and gas floating would be observed. In addition, the calculation results would be compared with the experiment results from papers. However, these results show that with the increasing flowing rates, the gas releasing frequency gets higher and the strike phenomena between bubbles takes place more frequently.
摘要 I
Abstrate ii
目錄 iii
圖目錄 vi
符號說明 viii

第一章 緒論 1
1-1 研究背景 1
1-2 熔融還原煉鐵製程簡介 4
1-3 文獻回顧 8
1-3-1 熔融還原煉鐵製程之回顧 8
1-3-2 氣體攪拌數學模擬之回顧 8
1-3-3 大氣泡流動的文獻回顧 10
1-4 研究目的與內容 12
第二章 數學模式 19
2-1 簡化與假設 19
2-2 控制方程式 20
2-2-1 分離流體模式(Discrete Model) 20
2-2-2 擬似單相流模式(Quasi-Single Phase Model) 20
2-3 定義自由液面的方法 22
2-4 邊界條件設定 23
2-4-1 固體邊牆 23
2-4-2 自由表面的邊界條件 24
第三章 數值方法 25
3-1 系統網格分割及變數安排 25
3-2 動量方程式的差分化 26
3-3 連續方程式與壓力修正的方法 27
3-4 自由表面的追蹤法則 30
3-5 邊界條件的數值處理 32
3-5-1 固體邊牆的邊界條件 32
3-5-2 自由液面的邊界條件 32
3-6 解題步驟及流程 34
第四章 結果與討論 41
4-1 大氣泡系統網格劃分 41
4-2 氣液兩相中單氣泡之運動型態與表面流場 41
4-3 氣液兩相中連續吹射模擬解析 42
第五章 結論 64
第六章 建議未來工作方向 65
參考文獻 66
附錄A 動量方程式之差分式 72
附錄B 三維自由表面類型圖 82
1.M. Zhou and J. K. Brimacombe, “Critical Fluid-Flow Phenomenon in Gas-Stirred Ladle”, Metallurgy Transaction, Vol. 25B, 1994, p681-693.
2.M. J. Corbett, “Process Developments in Coal-based Ironmaking”, Transactions of the Institute of Mining and Metallurgy, Section C, 103, 1994, p21-25.
3.M. Baba, “Current Status of JISF’s Direct Iron Ore Smelting Reduction Process”, Transactions of the Institute of Mining and Metallurgy, Section C, 103, 1994, p15-20.
4.G. R. Belton and R. J. Fruehan, “Rate Phenomena in Iron Bath Smelting”, The Ethem T. Turkdogan Symposium, 1994, p3-21.
5.Shinotake and Y. Takamoto, “Combustion and Heat Transfer Mechanism in Iron Bath Smelting Reduction Furnace”, ATS Steelmaking Conference, 1992, p965-973.
6.H. J. Li and M. Tokuda, “Thermodynamic Simulation on the Behavior of Recycling Elements in the Iron Bath Smelting Reduction Process”, ISIJ International, Vol. 33, 1993, No.5, p539-548.
7.M. P. Davis, K. Pericleous, M. P. Schwarz and M. Cross, “Mathematical Modelling Tools for the Optimisation of Direct Smelting Process”, Conference Proceedings on Computational Fluid Dynamics in Mineral & Metal Processing & Powder Generation, 1997.
8.D. Mazumdar and R. I. L. Guthire, “The Physical and Mathematical Modelling of Gas Stirred Ladle Systems”, ISIJ International, Vol. 35, 1995, No. 1, p1-20.
9.O. J. Ilegbusi and J. Szekely, “The Modeling of Gas-Bubble Driven Circulation Systems”, ISIJ International, Vol. 30, 1990, p731.
10.H. Turkoglu and B. Farouk, “Numerical Computations of Fluid Flow and Heat Transfer in a Gas-Stirred Liquid Bath”, Metallurgy Transaction, Vol. 21B, 1990, p771.
11.D. Mazumdar and R. I. L. Guthrie, “Hydrodynamic Modeling of Some Gas Injection Procedures in Ladle Metallurgy Operations”, Metallurgical Transactions B, Vol. 16, 1985, p83-90.
12.D. Mazumdar and R. I. L. Guthrie, “Numerical Computation of Flow and Mixing in Ladle Metallurgy Steelmaking Operations (CAS Methods) ”, Applied Mathematical Modeling, Vol. 10, 1986, p25-32.
13.R. I. L. Guthrie, “Physical and Mathematical Models for Ladle Metallurgy Operations”, Conference Proceeding on Mathematical Modeling of Materials Processing Operations, 1987, p447-482.
14.S. T. Johansen, and F. Boysan, “Fluid Dynamics in Bubble-Stirred Ladle: Part II. Mathematical Modeling”, Metallurgical Transactions B, Vol. 19B, 1988, p755-764.
15.Y. Y. Sheng and G. A. Irons, “The Impact of Bubble Dynamics on the Flow in Plumes of Ladle Water Models”, Metallurgical and Materials Transactions B, Vol. 26B, 1995, P625-635.
16.S. T. Johansen, “Fluid Flow in Bubble-Stirred Ladle”, SINTEF Report, 1986.
17.D. Mazumdar and R. I. L. Guthrie, “An Assessment of a Two Phase Calculation Procedure for Dynamic Modeling of Submerged Gas Injection in Ladles” , ISIJ International, Vol. 34, 1994, p384.
18.Y. Y. Sheng and G. A. Irons, “The Impact of Bubble Dynamics on the Flow in Plumes of Ladle Water Models”, Metallurgical and Materials Transactions B, Vol. 26B, 1995, P625-635.
19.J. Szekely, H. J. Wang and K. M. Kiser, “Flow Pattern and Velocity Prediction in a Water Model of an Argon-Stirred Ladle”, Metallurgical Transactions B, Vol. 13, 1976, p287-295.
20.J. Szekely, T. Lehner and C. W. Chang, “Flow Phenomena Mixing and Mass Transfer in Argon-Stirred Ladles”, Ironmaking and Steelmaking, No. 6, 1979, p285-293.
21.T. DebRoy, A. K. Majumdar and D. B. Spalding, “Numerical Prediction of Recirculation Flows with Free Convection Encountered in Gas-Agitated Reactors”, Applied Mathematical Modeling, September, 1978, p146-150.
22.T. DebRoy, A. K. Majumdar, “Predicting Fluid Flow in Gas-Stirred Systems”, Journal of Metals, November, 1981, p42-47.
23.J. H. Grevet, J. Szekely and N. E. El-Kaddah, “An Experimental and Theoretical Study of Gas Bubble Driven Circulation Systems”, International Journal of Heat and Mass Transfer, Vol. 25, No. 4, 1982, p487-497.
24.B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows”, Computer Method in Applied Mechanics and Engineering, Vol. 3, 1974, p269-289.
25.Y. Sahai and R. I. L. Guthrie, “Hydrodynamics of Gas Stirred Melts”, Metallurgical Transactions B, Vol. 13, 1982, p193-211.
26.J. S. Woo, J. Szekely, A. H. Castillejos, and J. K. Brimacombe, “A Study on the Mathematical Modeling of Turbulent Recirculating Flows in Gas-Stirred Ladles”, Metallurgical Transaction B, Vol. 21B, 1990, p269-277.
27.M. Zhou and J. K. Brimacombe, “Critical Fluid-Flow Phenomenon in Gas-Stirred Ladle”, Metallurgy Transaction, Vol. 25B, 1994, p681-693.
28.P. S. Mohanty, T. Sundararajan and N. Chakraborti, “A Finite Element Modeling Analysis of Flow and Mass Transfer through Nonspherical Bubbles in a Copper Converter”, Metallurgy Transaction, Vol. 24B, 1993, p617-626.
29.J. D. Bugg and R. D. Rowe, “Modeling the Initial of Large Cylindrical and Spherical Bubbles”, International Journal For Numerical Methods In Fluids, Vol. 13, 1991, p109-129.
30.A. Tomiyama, A. Sou, H. Minagawa and T. Sakaguchi, “Numerical Analysis of a Single Bubble by VOF Method”, JSME International Journal, Vol. 36B, No.1, 1993, p51-56.
31.A. Nishihara, S. Kieda and Y. Kunugi, “Numerical Analysis of the Motion of a Bubble Using MAC Method”, 日本機械學會論文集, Vol. 59B, 1993, p126-130.
32.D. Bhaga and M. E. Weber, “In-Line Interaction of a Pair of Bubbles in a Viscous Liquid”, Chemical Engineering Science, Vol. 35, 1980, p2467-2474.
33.I. Komasawa, T. Otake and M. Kamojima, “Wake Behavior and Its Effect on Interaction Between Spherical Cap Bubbles”, Journal of Chemical Engineering of Japan, Vol. 13, 1980, p103-109.
34.S. O. Unverdi and G. Tryggvason, “A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows”, Journal of Computational Physics, Vol. 100, 1992, p25-37.
35.S. H. Brecht and J. R. Ferrante, “Vortex-in-Cell Simulations of Buoyant Bubbles in Three Dimensions”, Physical Fluids A, Vol. 1, No. 7, 1989, p1166-1191.
36.http://www.wmrc.uiuc.edu/manuals/primmetals/images/figure2_diosprocess.gif
37.D. Mazumdar and R. I. Gutrie,” An Assessment of a Two Phase Calculation Procedure for Dynamic Modeling of Submerged”, ISIJ Int., Vol. 30, 1990, 731
38.W. L. Haberman and R. K. Morton: Proc. ASCE, Vol. 387, 1954, 227
39.R. Clift, J, R, Grace and M. E. Weber,” Bubbles, Drops and Particles”, Academic Press Inc., New York, NY, 1978
40.C. W. Hirt, B. D. Nichols and N. C. Romero, “SOLA-A Numerical Solution Algorithm for Transient Fluid Flows”, Los Alamos Scientific Laboratory report LA-5852, 1975
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top