跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 07:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張志銘
研究生(外文):Chih-Ming Chang
論文名稱:熱機械處理對Ti-7.5Mo-2Fe合金結構及性質的影響
論文名稱(外文):The Effect of Heat Treatment on Microstructure and Properties of Ti-7.5Mo-2Fe Alloy
指導教授:朱建平朱建平引用關係陳瑾惠
指導教授(外文):Chien-Ping JuJiin-Huey Chern Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:90
中文關鍵詞:機械性質熱處理鈦合金
外文關鍵詞:Mechanical propertiesHeat treatmentTitanium alloy
相關次數:
  • 被引用被引用:6
  • 點閱點閱:718
  • 評分評分:
  • 下載下載:167
  • 收藏至我的研究室書目清單書目收藏:5
摘要

因為鈦及鈦合金有質輕(4.5g/cm3)、高強度比、優異的抗腐蝕性、生物相容性(biocompatibility)、長骨性(osteoinduction)等特性,所以近來已成為生醫植入材的研究重點。而其中β鈦合金的開發更是目前的主流。
本研究即以本實驗室所開發,屬於β鈦合金的Ti-7.5Mo-2Fe合金為對象,進行一系列熱及機械處理的研究。
在冷加工部分,Ti-7.5Mo-2Fe合金可以壓延至75%的厚度縮減而不斷裂,顯示其加工性良好。
在β轉換溫度以上進行固溶處理可得等軸晶粒之完全β相,彎曲強度較低,延性較好;溫度較高或持溫時間較長會使β晶粒快速成長而使強度降低。β轉換溫度以下進行固溶處理能保留部分冷加工殘留的差排,彎曲強度較高,延性較差。在450°C進行固溶處理會析出ω相,造成材料脆化。機械性質綜合表現以750°C,5分鐘的條件最佳。
在時效部分則因為α相的析出強化現象,彎曲強度提高,延性降低。在約低於β轉換溫度以下100度進行時效可得最高彎曲強度,但是延性較差,綜合表現以650°C,8小時的條件為最佳。
Abstract
Because of light weight, high strength to weight ratio, excellent corrision resistance, biocompatibility and osteoinduction, titanium and some of its alloys have been important issues for medical implants. Among them, the β type alloys are now the main target.
The present work is a study of a series of heat and mechnical treatments on β type alloy: Ti-7.5Mo-2Fe.
Ti-7.5Mo-2Fe alloy can be cold rolled to the extent of 75% reduction in thickness without cracking. It shows that Ti-7.5Mo-2Fe alloy has good deformability.
Heat treated above β transus can get fully equi-axial β and better elongation; higher temparature or longer heat treatment time will cause fast β grain growth and lower the strength.
Heat treated below β transus will retain dislocations caused by cold working and increase the bending strength. Heat treated at 450°C will cause the precipitate of ω, which embrittles the material. The heat treatment condition of 750°C, 5min has the best comprehensive mechnical properties.
In aging condition, the bending strength will increse because of α precipitates. Aging at a temperature 100 degree lower thanβtransus can get the highest strength, but worse elongation. Aging at 650°C for 8 hours can get a comprehensive result.
目錄
摘要………………………………………………………………………I
誌謝………………………………………………………………………II
目錄………………………………………………………………………III
表目錄……………………………………………………………………VII
圖目錄……………………………………………………………………VIII

第一章 前言.......................................1
1-1生醫材料的定義..................................1
1-2金屬生醫材料的發展...............................1
1-2-1 不�袗� Stainless steel...............................3
1-2-2 鈷基合金 Cobalt-base alloy...........................3
1-2-3 鈦合金 Ti-alloy..................................3
1-3金屬生醫植入材之要求.............................4
1-3-1 生物相容性 ...................................4
1-3-2 抗磨耗性.....................................5
1-3-3 低彈性模數 ...................................5
1-4 研究目的......................................5

第二章 鈦及鈦合金簡介...............................7
2-1純鈦...........................................7
2-2鈦合金.........................................9
2-2-1 α型鈦合金.....................................9
2-2-2 β型鈦合金.....................................12
2-2-3 α-β型鈦合金....................................12
2-3近年來生醫用鈦合金之發展...........................13
2-3-1 Ti-6Al-4V.......................................13
2-3-2 TMZF合金......................................13
2-3-3 Ti-13Nb-13Zr.....................................14
2-3-4 Ti-15Mo........................................14

第三章 文獻回顧及理論基礎.............................16
3-1 鈦合金之相變化...................................16
3-1-1 二元平衡相圖....................................16
3-1-2 非平衡相.......................................16
3-2 Mo當量..........................................21
3-3 低彈性合金之設計理論...............................21
3-4 熱處理..........................................22
3-4-1 釋放殘留應力....................................22
3-4-2 固溶處理........................................24
3-4-3 時效...........................................24
3-5 生物相容性.......................................24

第四章 實驗步驟及方法.................................28
4-1 實驗流程.........................................28
4-2 試料準備.........................................28
4-2-1 Ti-7.5Mo-2Fe合金配製...............................28
4-2-2 鑄造設備........................................28
4-2-3 熔煉及鑄造 ......................................31
4-2-4壓延及石英封管....................................31
4-2-5 試片規格........................................32
4-2-6 熱處理..........................................32
4-3 顯微結構及金相分析..................................32
4-3-1 金相顯微結構觀察..................................32
4-3-2 X光繞射相分析....................................36
4-3-3 掃瞄式電子顯微鏡(SEM)觀察...........................36
4-3-4 EDS 成分分析......................................36
4-3-5 晶粒大小計算......................................37
4-4 機械性質分析.......................................37
4-4-1 彎曲測試.........................................37

第五章 結果與討論......................................40
5-1 Ti-7.5Mo-2Fe的加工性..................................40
5-1-1 Ti-7.5Mo-2Fe合金的冷加工..............................40
5-1-2 壓延後之機械性質...................................40
5-1-3 X光繞射相分析.....................................40
5-2 Ti-7.5Mo-2Fe的β轉換溫度測定.............................43
5-2-1 X光繞射相分析.....................................46
5-3 不同固溶條件對Ti-7.5Mo-2Fe機械性質的影響..................46
5-3-1 不同固溶處理溫度...................................46
5-3-2 析出強化..........................................53
5-3-3 不同固溶處理時間....................................57
5-4 不同時效條件對Ti-7.5Mo-2Fe機械性質的影響...................59
5-4-1不同時效溫度........................................61
5-5析出相的進一步討論....................................65
5-5-1 相成分分析 .........................................65
5-5-2 型態分析...........................................65
5-5-3析出相與機械性質之關聯................................67

第六章 結論.............................................71

第七章 參考文獻 ..........................................73

附錄...................................................76

自述...................................................79
1. Clemson Advisory Board for Biomaterials “Definition of the word ‘biomaterials’”, the 6th annual international biomaterial symposium, April 20-24, 1974.

2. Williams DF, “Definitions in biomaterials. Proceedings of a consensus conference of the European society for biomaterials, Chester, England, March 3-5 1986, Vol. 4, Elsevier, New York.

3. Ranter BD, Hoffman AS, Schoen FJ, Lemons JE, “Biomaterials science—An introduction to materials in medicine”, Academic Press, USA, 1996.

4. Lautenschlager EP and Monaghan P, “Titanium and titanium alloys as dental materials”, Internat Dent J, 43:245-253, 1993.

5. Niinomi M, “Mechanical properties of biomedical titanium alloys”, Mater Sci Eng, A243:231-236, 1998.

6. Wang K, “The use of titanium for medical applications in the USA”, Mater Sci Eng, A213:134-137, 1996

7. 何文福, “鑄造鈦-鉬合金之結構及性質研究”, 成功大學博士論文, 1999.

8. Beder OE, Eade G and Wash S, “An investigation of tissue tolerence to titanium metal implants in dogs”, Surgery, v39, p470, 1956.

9. Black J, “Biological performance of materials—fundamentals of biocompatibility”, Marcel Dekker, Inc., New York, 1992. pp 286.

10. Joshi MG, Advani SG, Miller F, Santare MH, “Analysis of a femoral hip prosthesis designed to reduce stress shielding”, J Biomech, 33:1655-1662, 2000.

11. Forwood M.R. and Tumer C.H., “Skeletal adaptions to mechanical usage: results from tibial loading studies in rat”, Bone, vol.17, 4:197S-205S, 1995.

12. Brown SA and Mayor MB, “The biocompatibility of materials for internal fixation of fractures”, J Biomed Mater Res, vol.12, 1978. pp:67-82.

13. William FS, “Structure nad properties of engineering allloys”, McGraw-Hill International Book Company, 1981. pp 411

14. D.J. Lin, J.H.Chern Lin and C.P. Ju, “Structure and properties of Ti-7.5Mo-xFe alloys”, Biomater, 23:1723-1730, 2002.

15. D.J. Lin, J.H. Chern Lin and C.P. Ju, “Effect of omega phase on deformation behavior of Ti-7.5Mo-xFe alloys”, Mater Chem Phys, 2002. (in press)

16. Bannon BP and Mild EE, “Titanium alloys for biomaterial application : An overview”, Titanium alloys in surgical implant, pp: 7-15, 1983

17. Collings EW, “The physical metallurgy of titanium alloys”, American Society for Metals, Metal Park, OH, USA, 1984, pp. 21

18. Donachie MJ, “Titanium—a technical guide”, ASM International, Metals Park, OH, USA, 1988. pp. 21

19. Reed-Hill RE and Abbaschian R, “Physical metallurgy principles”, 3rd. Ed.

20. Brick RM, Pense AW and Gordon RB, “Structure and properties of engineering meterials”, McGraw Hill, New York, 1977, pp. 415-457

21. 李金山,吳炳南,陳石法,張添財,蔡希杰, “機械材料”,高立圖書有限公司,1990. pp. 423

22. 林家緯, “鈦鉬合金之熱及機械穩定性之研究”, 成功大學碩士論文, 1998.

23. Bully RL, “Titanium wear debris in failed cemented total hip arthroplasty”, J. Arthroplasty, 7(3), 1992, pp. 315-323

24. Molchanova EK, “Phase diagrams of titanium alloys [transl. of Atlas diagram sostoyaniya titanovyk splavov], Israel program for scientific translations, Jerusalem, 1965.

25. Murry JL, “Binary alloys phase diagrams”, edited by Massalski TB, Murray Park, Ohio: ASM, 1986.

26. Williams JC, Hickman BS and Leslie DH, “The effect of ternary additions on the decompositon of metastable β-phase titanium alloys”, Metall. Trans., vol.12, pp: 477-484, 1971.

27. Song Y, Xu DS, Yang R, Li D, Wu WT, and Guo ZX, “Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys”, Mater Sci Eng A260:269-274, 1999.

28. Ellis DE, Painter GS, Phys. Rev. B2 (1970) 2887

29. ASM committee on titanium and titanium alloys, “Heat treating of titanium and titanium alloys”, ASM

30. Takao Hanawa, “In vivo metallic biomaterials and surface modification”, Mater Sci Eng, A267:260-266, 1999.

31. Hamanaka H, Doi H, Yoneyama T and Okuno O, “Dental castings of titanium and Ni-Ti alloys by a new casting machine”, 68:1529-1533, 1989.

32. Geroge F, “Metallography—Principles and pactice”, McGraw-Hill, 1984, pp.436-472

33. Guha A, “Metals Handbook”, 9th ed., vol. 8, edited by Boyer HE and Gall TL, American Society for Metals, Metals Park, Ohio, 1985, pp. 133-136

34. Balcerzak AT & Sass SL, “The formation of the ωphase in Ti-Nb alloys”, Metall Trans, v3:1601, 1972.

35. McCbe KK and Sass SL, “ The initial stages of the omega phase transformations in Ti-V alloys”, Philos. Mag., v23:957-970, 1971.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top