|
1.H. Gleiter, “On the structure of grain boundaries in metals”, Mater. Sci. Eng. 52, 91 (1982). 2.C.M. Mo, Y.H. Li, Y.S. Liu, Y. Zhang, and L.D. Zhang, “Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels”, J. Appl. Phys. 83, 4389 (1998). 3.C. Fan, C. Li, and A. Inoue, “Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys”, Phys. Rev. B 61, R3761 (2001). 4.C. Fan and A. Inoue, “Ductility of bulk nanocrystalline composites and metallic glasses at room temperature”, Appl. Phys. Lett. 77, 46 (2000). 5.L.Q. Xing, C. Bertrand, J.P. Dallas, and M. Cornet, “Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties” Mat. Sci. Eng. A241, 216 (1998). 6.W.D. Sproul, “New routes in the preparation of mechanically hard films”, Science 273, 889 (1996). 7.H. Holleck, “Material selection for hard coatings”, J. Vac. Sci. Technol. A4, 2661 (1986). 8.S.H. Jhi, J. Ihm, S.G. Louie, and M.L. Cohen, “Electronic mechanism of hardness enhancement in transition-metal carbonitrides”, Nature (London) 399, 132 (1999). 9.O. Knotek, M. Bohmer, T. Leyendecker, “On structure and properties of sputtered Ti and Al based hard compound films”, J. Vac. Sci. Technol. A 4, 2695 (1986). 10.H.A. Jehn, S. Hofmann, V.E. Rückborn, W.D. Münz, “Morphology and properties of sputtered (Ti,Al)N layers on high speed steel substrates as a function of deposition temperature and sputtering atmosphere”, J. Vac. Sci. Technol. A4, 2701 (1986). 11.W.D. Münz, “Titanium aluminum nitride films: A new alternative to TiN coatings”, J. Vac. Sci. Technol. A 4, 2717 (1986). 12.J. Pelleg, L.Z. Zevin, and S. Lungo, “Reactive-sputter-deposited TiN films on glass substrates”, Thin Solid Films 197, 117 (1991). 13.U.C. Oh and J. H. Je, “Effects of strain energy on the preferred orientation of TiN thin films”, J. Appl. Phys. 74, 1692 (1993). 14.L. Hultman, J.E. Sundgren, J.E. Greene, D.B. Bergstrom, and I. Petrov, “High-flux Low-energy (~20 eV) N2+ Ion Irradiation during TiN Deposition by Reactive Magnetron Sputtering: Effects on Microstructure and Preferred Orientation,” J. Appl. Phys. 78, 5395 (1995). 15.F. Adibi, I. Petrov, J.E. Greene, L. Hultman, and J.E. Sundgren, “Effects of high-flux low-energy (20-100 eV) ion irradiation during deposition on the microstructure and preferred orientation of Ti0.5Al0.5N alloys grown by ultra-high-vacuum reactive magnetron sputtering”, J. Appl. Phys. 73, 8580 (1993). 16.J.E. Greene, J.E. Sundgren, L. Hultman, I. Petrov, and D.B. Bergstrom, “Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering”, Appl. Phys. Lett. 67, 2928 (1995). 17.J.S. Chun, I. Petrov, and J.E. Greene, “Dense Fully 111-Textured TiN Diffusion Barriers: Enhanced lifetime through microstructure control during layer growth,” J. Appl. Phys. 86, 3633 (1999). 18.D. Mclntyre, J.E. Greene, G. Håkansson, J.E. Sundgren, W.D. Münz, “Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: kinetics and mechanisms”, J. Appl. Phys. 67, 1542 (1990). 19.S.H. Lee, H.J. Ryoo, J.J. Lee, “(Ti1-xAlxN) coatings by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 12, 1602 (1994). 20.K.H. Kim, S.H. Lee, “Comparative studies of TiN and Ti1-xAlxN by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N2/H2/Ar gas mixture”, Thin Solid Films 283, 165 (1996). 21.B.J. Kim, Y.C. Kim, and J. J. Lee, “The effect of NH3 plasma pre-treatment on the adhesion property of (Ti1-xAlx)N coatings deposited by plasma-enhanced chemical vapor deposition”, Surf. Coat. Technol. 114, 85 (1999). 22.S.H. Lee and J.J. Lee, “Compositionally gradient (Ti1-xAlx)N coatings made by plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A13, 2030 (1995). 23.李銀安, 受控熱融合, (牛頓出版社, 台北, 1996), 第三章, pp. 54-91. 24.B. Chapman, Glow discharge processes, (John Wiley & Sons, New York, 1985), chapter 1-5, pp. 1-175. 25.A. Grill, Cold plasma in materials fabrication, (IEEE press, New York, 1994), chapter 1, 2, pp. 1-45. 26.J.R. Roth, Industrial plasma engineering”, (IOP Publishing Ltd, London, 1995), chapter 10, pp. 352-390. 27.蕭宏, 半導體製程技術導論, (台灣培生教育出版, 台北, 2001), 第七章, pp.221-253. 28.S. Sivaram, Chemical vapor deposition, (ITP Inc., New York, 1995), chapter 6, 7, pp.119-162. 29.C.V. Thompson, “Structure evolution during processing of polycrystalline films”, Annu. Rev. Mater. Sci. 30, 159 (2000). 30.M. Murakami, P. Chaudhari, Thermal strain in lead thin films- dependence of the strain on crystal orientation” Thin Solid Films 46, 109 (1977). 31.A. Van der Drift, “Evolution selection, a principle governing growth orientation in vapor-deposited layers”, Philips. Res. Repts. 22, 267 (1967). 32.B.A. Movchan and A.V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide “ Fiz. Metal. Metalloved 28, 253 (1969). 33.J.A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol. 11, 666 (1974). 34.P.B. Barna and M. Adamik, “Fundamental structure forming phenomena of polycrystalline films and the structure zone models”, Thin Solid Films 317, 27 (1998). 35.M. Adamik, P.B. Barna, and I. Tomov, “Columnar structures in polycrystalline thin films developed by competitive growth”, Thin Solid Films 317, 64 (1998). 36.D.S. Rickerby and A. Matthews, Advanced surface coatings: a handbook of surface engineering, (Chapman and Hall, New York, 1991), chapter 7, pp. 162-193. 37.R. Feynman, “There's plenty of room at the bottom”, a talk at the annual meeting of the American Physical Society (Caltech, 1959). 38.H. Gleiter, “Nanostructured materials”, in Mechanical properties and deformation behavior of materials have ultra-fine microstructure, edited by M. Nastasi, D.M. Parkin, and H. Gleiter, (Kluwer Academic Publisher, Netherlands, 1993), p.7. 39.李言榮, 材料物理學概論, (清華大學出版社, 北京, 2001), p.39. 40.M. Ohring, The materials science of thin films, (Academic Press, San Diego, 1992), p.409. 41.S. Yip, “The strongest size”, Nature (London) 391, 532 (1998). 42.R.W. Siegel and G.E. Fougere, “Mechanical properties of nanophase metals”, Nanostructured Mater. 6, 205 (1995). 43.T.G. Nieh, J. Wadsworth, “Hall-Petch relation in nanocrystalline solids”, Script Metall. Mater. 25, 955 (1991). 44.H. Wang, A. Sharma, A. Kvit, Q. Wei, X. Zhang, C.C. Koch, and Narayan, “Mechanical properties of nanocrystalline and epitaxial TiN films on (100) silicon”, J. Mater. Res. 16, 2733 (2001). 45.J. Schiøtz, F.D.D. Tolla, and K.W. Jacobsen, “Softening of nanocrystalline metals at very small grain sizes”, Nature (London) 391, 561 (1998). 46.J. Karch, R. Birringer, and H. Gleiter, “Ceramics ductile at low temperature”, Nature (London) 330, 556 (1987). 47.S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, and A.K. Mukherjee, “Low-temperature superplasticity in nanostructured nickel and metal alloy”, Nature 398 (London), 684 (1999). 48.S.X. McFadden, A.P. Zhilyaev, R.S. Mishra, and A.K. Mukherjee, “Observations of low-temperature superplasticity in electrodeposited ultrafine grained nickel”, Mat. Lett. 45, 345 (2000). 49.L. Lu, M.L. Sui, and K. Lu, “Superplastic extensibility of nanocrystalline copper at room temperature”, Science 287, 1463 (2000). 50.L. Lu, M.L. Sui, and K. Lu, “Superplasticity extensibility and deformation mechanism of a nanocrystalline copper sample”, Adv. Eng. Mat. 3, 663 (2001). 51.L. Lu, M.L. Sui, and K. Lu, “Cold rolling of bulk nanocrystalline copper”, Acta. Mater. 49, 4127 (2001). 52.L. Lu, L.B. Wang, B.Z. Ding, and K. Lu, “High-tensile ductility in nanocrystalline copper”, J. Mat. Res. 15, 270 (2000). 53.J. Shieh, H.L. Wang, M. S. Tsai, and M. H. Hon, “Functionally gradient PECVD Ti(C,N) coatings”, Mat. Res. Soc. Symp. Proc. 555, 407 (Boston, 1999). 54.E.A. Brandes, Smithell’s Metals Reference Book, (Butterworth, Cornwall, 1983), p. 8-56. 55.E.A. Brandes, Smithell’s Metals Reference Book, (Butterworth, Cornwall, 1983), p. 8-61. 56.B.D. Cullity, Elements of X-ray diffraction, (Addison-Wesley Publishing Co., Inc., Massachusetts, 1978), p. 102. 57.許樹恩、吳泰伯, X光繞射原理與材料結構分析, (中國材料科學學會, 新竹, 1996), p. 422. 58.W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater Res. 7, 1564 (1992). 59.G.M. Pharr and W.C. Oliver, “Measurement of thin film mechanical properties using nanoindentation”, MRS Bulletin 17, 28 (1992). 60.P. A. Steinmann, Y. Tardy, and H. E. Hintermann, “Adhesion Testing by the Scratch Test Method: the Influence of Intrinsic and Extrinsic Parameters on The Critical Load,” Thin Solid Films 154, 333 (1987). 61.C. S. Barrett and T. B. Massaalski, “Pole Figures and Orientation Determination”, in Structure of Metals, (Pergamon Press, Oxford, 1980), p. 204. 62.H. Shibata, M. Murota, and K. Hashimoto, “Effects of Al(111) Crystal Orientation on Electromigration in Half-micron Layered Al Interconnects,” Jpn. J. Appl. Phys. Part1 32, 4479 (1993). 63.S. Vepřek, “Plasma-Induced and Plasma-assisted Chemical Vapor Deposition,” Thin Solid Films 130, 135 (1985). 64.H. E. Cheng, M. J. Chiang, and M. H. Hon, ”Growth Characteristics and Properties of TiN Coating by Chemical Vapor Deposition”, J. Electrochem. Soc. 142, 1573 (1995). 65.J.E. Greene, “Low-energy ion/surface interactions during crystal growth from the vapor phase: effects on nucleation and growth, defect creation and annihilation, microstructure evolution, and synthesis of metastable phases”, in Handbook of crystal growth, vol. 1, edited by D.T.J. Hurle, (Elsevier Science Publishers, Amsterdam, 1993) chapter 9, pp. 640-681. 66.G. Levi, W. D. Kaplan, M. Bamberger, “Structure Refinement of Titanium Carbonitride (TiCN)”, Materials Letters 35, 344 (1998). 67.D. J. Kim, Y. R. Cho, M. J. Lee, J. M. Hong, Y. K. Kim, and K. H. Lee, “Properties of TiN-TiC multiplayer coatings using plasma-assisted chemical vapor deposition”, Surf. Coat. Technol. 116-119, 906 (1999). 68.D. H. Jang, J. S. Chun, and J. G. Kim, “The Deposition Rate and Properties of the Deposit in Plasma Enhanced Chemical Vapor Deposition of TiN,” J. Vac. Sci. Technol. A7, 31 (1989). 69.N. B. Ming and I. Sunagawa, “Twin Lamellae as Possible Self-perpetuating Step Sources,” J. Crystal Growth 87, 13 (1988). 70.H. E. Cheng and M. H. Hon, “Texture formation in titanium nitride films prepared by chemical vapor deposition,” J. Appl. Phys. 79, 8047 (1996). 71.K. Han and G. C. Weatherly, “Transmission Electron Microscopy Investigation of Twinning in Titanium Carbonitride,” Phil. Mag. Lett., 76247 (1997). 72.Y.J. Liu, H.J. Kim, Y. Egashira, H. Kimura, H. Komiyama, “Suppressing the formation of cone structures in chemical-vapor-deposited aluminum nitride/titanium nitride films”, J. Am. Ceram. Soc. 79, 1335 (1996). 73.G. Håkansson, J.E. Sundgren, D. Mcintyre, J. E. Greene, W.D. Münz, “Microstructure and physical properties of polycrystalline metastable Ti0.5Al0.5N alloys grown by d. c. magnetron sputter deposition”, Thin Solid Films 153, 55 (1987). 74.U. Wahlström, L. Hultman, J.E. Sundgren, F. Adibi, I. Petrov, J.E. Greene, “Crystal growth and microstructure of polycrystalline Ti1-xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering, Thin Solid Films 235, 62 (1993). 75.C. Jiménez, C.S. Fernández, J.M.M. Duart, M. Fernández, J.S. Olías, “Dependence of the mechanical and structural properties of (Ti,Al)N films on the nitrogen content”, J. Mater. Res. 14, 2830 (1999). 76.J. Musil, H. Hrubý, “Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering”, Thin Solid Films 365, 104 (2000). 77.Y.H. Cheng, B.K. Tay, S.P. Lau, X. Shi, and H.C. Chua, “Characterization of (Ti,Al)N films deposited by off-plane double bend filtered cathodic vacuum arc”, J. Vac. Sci. Technol. A19, 557 (2001). 78.Y.H. Cheng, B.K. Tay, S.P. Lau, and X. Shi, “Raman spectroscopy and x-ray diffraction studies of (Ti,Al)N films deposited by filtered cathodic vacuum arc at room temperature”, J. Appl. Phys. 89, 6192 (2001). 79.S.H. Lee, B.J. Kim, H.H. Kim, J.J. Lee, “Structure analysis of AlN and (Ti1-xAlx)N coatings made by plasma enhanced chemical vapor deposition”, J. Appl. Phys. 80, 1469 (1996). 80.B.J. Kim, S.H. Lee, J.J. Lee, “Adhesion, oxidation and wear properties of compositionally gradient (Ti1-xAlx)N coatings made by plasma enhanced chemical vapor deposition“ J. Mat. Sci. Lett. 16, 1597 (1997). 81.B.J. Kim, Y.C. Kim, J.W. Nah, J.J. Lee, “High temperature oxidation of (Ti1-xAlx)N coatings made by plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 17, 133 (1999). 82.C.W. Kim, K.H. Kim, “Anti-oxidation properties of TiAlN film prepared by plasma-assisted chemical deposition and roles of Al”, Thin Solid Films 307, 113 (1997). 83.K. Bartsch, A. Leonhardt, U. Langer, K. Kunanz, “New PACVD-hard material layers for wear protection of high-speed steel”, Surf. Coat. Technol. 94-95, 168 (1997). 84.D. Heim, R. Hochreiter, “TiAlN and TiAlCN deposition in an industrial PaCVD-plant”, Surf. Coat. Technol. 98, 1553 (1998). 85.C. Jarms, H.-R. Stock, P. Mayr, “Mechanical properties, structure and oxidation behavior of Ti1-xAlxN-hard coatings deposited by pulsed d.c. plasma-assisted chemical vapor deposition (PACVD)”, Surf. Coat. Technol. 108-109, 206(1998). 86.S. Anderbouhr, V. Ghetta, E. Blanquet, C. Chabrol, F. Schuster, C. Bernard, “LPCVD and PACVD (Ti,Al)N films: morphology and mechanical properties”, Surf. Coat. Technol. 115, 103 (1999). 87.O. Knotek, T. Leyendecker, “On the structure of (Ti,Al)N-PVD coatings”, J. Solid State Chem.70, 318 (1987). 88.H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures For Polycrystalline and Amorphous Materials, (Wiley, New York, 1974), chapter 9, pp.618-708. 89.A.S. Nowick, S.R. Mader, “A hard-sphere model to stimulate alloy thin films”, IBM J. Res. Dev. 9, 358 (1965). 90.O. Knotek, F. Loffler, L. Wolkers, “Crystallization of amorphous metastable ceramic PVD-coatings, Mat. Res. Soc. Symp. Proc. 321, 621(1994). 91.E.T. Kang, K.G. Neoh, Y.K. Ong, K.L. Tan, B.T.G. Tan, “X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative Fe(III) salts”, Macromolecules 24, 2822 (1991). 92.P.B. Mirkarimi, D.L. Medlin, K.F. McCarty, D.C. Dibble, W.M. Clift, J.A. Knapp, J.C. Barbour, “Synthesis, characterization, and mechanical properties of thick, ultrahard cubic boron nitride films deposited by ion-assisted sputtering”, J. Appl. Phys. 82, 1617 (1997). 93.S. Vepřek, S. Reiprich, L. Shizhi, “Superhard nanocrystalline composite materials: the TiN/Si3N4 system”, Appl. Phys. Lett. 66, 2640 (1995). 94.T.D. Shen, C.C. Koch, T.Y. Tsui, G.M. Pharr, “On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying”, J. Mater. Res. 10, 2892 (1995). 95.M.L. Cohen, “The theory of real materials”, Annu. Rev. Mat. Sci. 30, 1 (2000). 96.D. Briggs and M.P. Seah, Pratical Surface Analysis, (John Willey & Sons, Chichester, 1993), p. 599. 97.R. Bertoncello, A. Casagrande, M. Casarin, A. Glisenti, E. Lanzoni, L. Mirenghi, E. Tondello, “TiN, TiC and Ti(C,N) film characterization and its relationship to tribological behaviour” Surface and Interface Analysis 18, 523 (1992). 98.K. Hamrin, G. Johansson, A. Fahlman, C. Nordling, “Charge transfer in transition metal carbides and related compounds studied by esca” J. Phys. Chem. Solids 30, 1835 (1969). 99.H.M. Liao, R.N.S. Sodhi, T.W. Coyle, “Surface composition of AlN powders studied by x-ray photoelectron spectroscopy and bremsstrahlung-excited Auger electron spectroscopy”, J. Vac. Sci. Technol. A 11, 2681 (1993). 100.P. Martin, R. Netterfield, T. Kinder, A. Bendavid, “Optical properties and stress of ion-assisted aluminum nitride thin films”, Appl. Optics 31, 6734 (1992). 101.J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S.R.P. Silva, “Raman spectroscopy on amorphous carbon films”, J. Appl. Phys. 80, 440 (1996). 102.A. C. Ferrari, and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon” Phys. Rev. B 61, 14095 (2000). 103.B. Racine, A.C. Ferrari, N.A. Morrison, I. Hutchings, W.I. Milne, and J. Robertson, “Properties of amorphous carbon-silicon alloys deposited by a high plasme density source”, J. Appl. Phys. 90, 5002 (2001). 104.M. Diserens, J. Patscheider, and F. Lévy, “Improving the properties of titanium nitride by incorporation of silicon” Surf. Coat. Technol. 108-109, 241 (1998). 105.J. T. Scheper, K. W. Mesthrige, J. W. Proscia, G.Y. Liu, and C.H. Winter, “Atmospheric pressure chemical vapor deposition of titanium aluminum nitride films” Chem. Mater. 11, 3490 (1999). 106.R. Wuhrer, W.Y. Yeung, M.R. Phillips, and G. McCredie, “Study on dc magnetron sputter deposition of titanium aluminium nitride thin films: Effect of aluminium content on coating” Thin Solid Films 290, 339 (1996). 107.B. H. Park, Y.I. Kim, and K. H. Kim, “Effect of silicon addition on microstructure and mechanical property of titanium nitride film prepared by plasma-assisted chemical vapor deposition” Thin Solid Films 348, 210 (1999). 108.S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jílek, and M. Šíma, “Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness” Surf. Coat. Technol. 108-109, 138 (1998). 109.S. Vepřek, “The search for novel, superhard materials”, J. Vac. Sci. Technol. A 17, 2401 (1999). 110.S. Vepřek, A. Niederhofer, K. Moto, T. Bolom, H.D. Mannling, P. Nesládek, G. Dollinger, and A. Bergmaier, “Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with H-v=80 to <= 105 GPa”, Surf. Coat. Technol. 133, 152 (2000). 111.W.J. Meng, E.I. Meletis, L.E. Rehn, and P.M. Baldo, “Inductively coupled plasma assisted deposition and mechanical properties of metal-free and Ti-containing hydrocarbon coatings” J. Appl. Phys. 87, 2840 (2000). 112.A.A. Voevodin, S.V. Prasad, and J.S. Zabinski, “Nanocrystalline carbide/amorphous carbon composite”, J. Appl. Phys. 82, 855 (1997). 113.A.A. Voevodin and J.S. Zabinski, “Supertough wear-resistant coatings with chameleon surface adaptation”, Thin Solid Films 370, 223 (2000). 114.S. Christiansen, M. Albrecht, H.P. Strunk, S. Veprek, “Microstructure of novel superhard nanocrystalline amorphous composites as analyzed by high resolution transmission electron microscopy” J. Vac. Sci. Technol. B16, 19 (1998). 115.B.K. Tay, Y.H. Cheng, X.Z. Ding, S.P. Lau, X. Shi, G.F. You, and D. Sheeja, “Hard carbon nanocomposite films with low stress”, Diamond Relat. Mater. 10, 1082 (2001). 116.J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin, “Separation of the sp3 and sp2 components in the C 1s photoemission spectra of amorphous carbon”, Phys. Rev. B 54, 8064 (1996). 117.S. Hirono, S. Umemura, M. Tomita, and R. Kaneko, “Superhard conductive carbon nanocrystalline films”, Appl. Phys. Lett. 80, 425 (2002). 118.P.J. Burnett and D.S. Rickerby, “The relationship between hardness and scratch adhesion”, Thin Solid Films 154, 403 (1987). 119.盧柯、盧磊, ”金屬納米材料力學性能的研究進展”, 金屬學報 36, 785 (2000). 120.M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis, “Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films”, Nanostructured Mat. 5, 689 (1995). 121.B.N. Kim, K. Hiraga, K. Morita, and Y. Sakka, “A high-stain-rate superplastic ceramic” Nature (London) 413, 288 (2000). 122.D.G. Morris, Mechanical behaviour of nanostructured materials, (Trans Tech, Switzerland, 1998), p.18. 123.R.W. Siegel and G.E. Fougere, “Mechanical properties of nanophase materials”, in Nanophase materials, synthesis, properties, applications, edited by G.C. Hadjipanayis and R.W. Siegel, (Kluwer Academic Publishers, Boston, 1994), pp. 233-261. 124.W.J. Clegg, “Controlling cracks in ceramics”, Science 286, 1097 (1999).
|