(3.235.11.178) 您好!臺灣時間:2021/02/26 03:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝健
研究生(外文):Jiann Shieh
論文名稱:電漿化學氣相沉積鈦-鋁-碳-氮系統奈米結構鍍層
論文名稱(外文):Nanostructured titanium-aluminum-carbonitride system coatings prepared by plasma enhanced chemical vapor deposition
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min Hsiung Hon
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:105
中文關鍵詞:奈米電漿化學氣相沉積鈦鋁碳氮陶瓷塑性
外文關鍵詞:ceramicplasticitynanoPECVDTiAlCN
相關次數:
  • 被引用被引用:8
  • 點閱點閱:912
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:242
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究鈦鋁碳氮化合物奈米結構鍍層。首先利用電漿化學氣相沉積法製備TiN、TiC與TiCxN1-x薄膜,探討梯度中介層與咖啡豆表面型態對Ti-C-N鍍層優選方向的影響。結果顯示咖啡豆表面型態乃成分變化造成的微雙晶所致,此微結構並強化了TiC0.62N0.38與TiC0.75N0.25鍍層的(422)優選取向。當引入梯度中介層之後,由於底層與梯度層作用力的影響,TiC鍍層的優選取向由(220)轉為(200),TiN鍍層的優選取向則由(200)轉為(220)。殘留應力對此結果有其影響。
接著探討Ti-Al-N鍍層之奈米結構與機械性質。以X光繞射、掃瞄式電子顯微鏡與穿透式電子顯微鏡分析相與顯微結構,另以奈米壓痕搭配原子力顯微鏡分析鍍層硬度與簡約彈性模數。高解析電子顯微鏡影像顯示當鋁含量達Al/(Al+Ti)=0.63時,晶粒尺寸可小於10 nm。以奈米壓痕量測硬度則顯示顯微結構是影響鍍層硬度的主要因素。
最後,鑑定一新的介穩相TiAlCN;利用四氯化鈦、三氯化鋁、甲烷與氮氣為反應源開發一新奈米複合材料TiAlCN/a-C。在此部分中以氫氣為載流氣體,基板溫度為500 ℃,電漿功率為100 W。鍍層以X射線繞射、拉曼光譜、X光電子能譜、穿透式電子顯微鏡及掃瞄式電子顯微鏡分析結構。顯示具B1-NaCl結構的TiAlCN奈米晶粒間含有非晶質碳相,且鍍層為(200)優選方向的柱狀晶型態。以奈米壓痕測試硬度顯示鍍層硬度較TiN高。顯微結構對機械性質影響,特別是陶瓷鍍層室溫下的塑性行為,也於文中討論。
Titanium-aluminum-carbonitride system nanostructured coatings are investigated in this study. Firstly the effects of graded interlayer and coffee-bean-like morphology on the preferred orientation of Ti-C-N coatings are discussed. TiN, TiC, and TiCxN1-x were prepared by plasma-enhanced chemical vapor deposition. The results showed that the topography of the TiCxN1-x, which resembled coffee beans, resulted from a twinning core structure that caused the dendritic grain shape and enhanced the (422) texture of TiC0.62N0.38 and TiC0.75N0.25. As graded coating was used as a transition layer, the texture of TiC was changed from (111) to (200), and TiN was changed from (200) to (111) due to the pseudomorphic forces provided by the first layer plus graded layer. The residual stress contributions to this phenomenon are also discussed.
Then the nanostructured and the corresponding mechanical behavior of Ti-Al-N coatings are investigated. The phase and microstructure of Ti1-xAlxN deposited were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Film hardness and reduced elastic modulus were measured by nanoindentation interfaced with an atomic force microscopy. High-resolution transmission electron micrograph shows that the grain size of Ti1-xAlxN decreased to less than 10 nm as aluminum contents in the film increased up to the ratio of Al/(Al+Ti)=0.63. The hardness measurement shows that the microstructure feature is the major factor to determine the film hardness.
Finally, a new metastable phase of TiAlCN is identified and a new nanocomposite, titanium aluminum carbonitride/amorphous-carbon, is invented using titanium tetrachloride, aluminum trichloride, methane and nitrogen as reactants. In this study hydrogen was used as carrier gases. A substrate temperature of 500 ℃ and an RF power of 100 W were used in all depositions. The films were characterized by X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. The results show that nanograins of titanium aluminum carbonitride with B1-NaCl structure are embedded in an amorphous carbon matrix. The coatings have a (200) preferred orientation with columnar cross-section morphology. Mechanical properties were analyzed by nanoindentation and hardness was demonstrated to increase via this microstructure design approach. The effects of microstructure on mechanical properties, especially the high plasticity property at room temperature, are also determined.
中文摘要 I
英文摘要 II
總目錄 IV
表目錄 VII
圖目錄 VIII
符號與中英名詞對照表 XI
第一章 序論 1
第二章 理論基礎 5
2-1 電漿原理 5
2-1-1 電漿的產生與電漿化學 5
2-1-2 電漿的描述 7
2-2 薄膜的形成機制 10
2-2-1 薄膜成長的優選方向與型態 10
2-2-2 溫度的影響 13
2-3 奈米材料 13
2-4 B1-NaCl結構 17
2-5 價電子濃度 17
2-6 梯度功能材料 18
第三章 實驗方法與步驟 19
3-1 實驗流程 19
3-2 系統設計 20
3-3 材料的選擇 22
3-4 實驗參數與步驟 24
3-5 薄膜性質分析 26
3-5-1 X射線繞射分析 26
3-5-2 掃瞄式電子顯微鏡分析 27
3-5-3 穿透式電子顯微鏡分析 27
3-5-4 二次離子質譜分析 27
3-5-5 化學分析用電子能譜分析 27
3-5-6 拉曼光譜分析 28
3-5-7 輝光放電分光分析 29
3-5-8 奈米壓痕 29
3-5-9 厚度與刮痕剖面量測 30
3-5-10 殘留應力分析 30
3-5-11 薄膜優選方向 31
3-5-12 鍍層附著性測試 31
第四章 Ti-C-N鍍層梯度中介層與表面型態對優選方向的影響 32
4-1 Ti-C-N系統單層鍍層結構與優選方向 33
4-2 梯度中介層對鍍層優選方向的影響 34
4-3 Ti-C-N咖啡豆狀表面型態 38
第五章 Ti-Al-N 鍍層奈米微結構與硬度關係之探討 44
5-1 文獻回顧 44
5-2 TiAlN奈米結構薄膜 45
5-3 鍍層微結構與機械性質的關係 55
第六章 Ti-Al-C-N鍍層TiAlCN介穩相結構鑑定與TiAlCN/a-C奈米複合鍍層結構及其性質之探討 60
6-1 TiAlCN介穩相結構之鑑定 62
6-2 TiAlCN/a-C奈米複合薄膜顯微結構之分析 68
6-3 奈米複合鍍層奈米壓痕分析 72
6-4 奈米複合鍍層之室溫塑性變形 75
第七章 結論 88
參考文獻 90
自述 99
著作 99
誌謝 101
授權書 102
1.H. Gleiter, “On the structure of grain boundaries in metals”, Mater. Sci. Eng. 52, 91 (1982).
2.C.M. Mo, Y.H. Li, Y.S. Liu, Y. Zhang, and L.D. Zhang, “Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels”, J. Appl. Phys. 83, 4389 (1998).
3.C. Fan, C. Li, and A. Inoue, “Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys”, Phys. Rev. B 61, R3761 (2001).
4.C. Fan and A. Inoue, “Ductility of bulk nanocrystalline composites and metallic glasses at room temperature”, Appl. Phys. Lett. 77, 46 (2000).
5.L.Q. Xing, C. Bertrand, J.P. Dallas, and M. Cornet, “Nanocrystal evolution in bulk amorphous Zr57Cu20Al10Ni8Ti5 alloy and its mechanical properties” Mat. Sci. Eng. A241, 216 (1998).
6.W.D. Sproul, “New routes in the preparation of mechanically hard films”, Science 273, 889 (1996).
7.H. Holleck, “Material selection for hard coatings”, J. Vac. Sci. Technol. A4, 2661 (1986).
8.S.H. Jhi, J. Ihm, S.G. Louie, and M.L. Cohen, “Electronic mechanism of hardness enhancement in transition-metal carbonitrides”, Nature (London) 399, 132 (1999).
9.O. Knotek, M. Bohmer, T. Leyendecker, “On structure and properties of sputtered Ti and Al based hard compound films”, J. Vac. Sci. Technol. A 4, 2695 (1986).
10.H.A. Jehn, S. Hofmann, V.E. Rückborn, W.D. Münz, “Morphology and properties of sputtered (Ti,Al)N layers on high speed steel substrates as a function of deposition temperature and sputtering atmosphere”, J. Vac. Sci. Technol. A4, 2701 (1986).
11.W.D. Münz, “Titanium aluminum nitride films: A new alternative to TiN coatings”, J. Vac. Sci. Technol. A 4, 2717 (1986).
12.J. Pelleg, L.Z. Zevin, and S. Lungo, “Reactive-sputter-deposited TiN films on glass substrates”, Thin Solid Films 197, 117 (1991).
13.U.C. Oh and J. H. Je, “Effects of strain energy on the preferred orientation of TiN thin films”, J. Appl. Phys. 74, 1692 (1993).
14.L. Hultman, J.E. Sundgren, J.E. Greene, D.B. Bergstrom, and I. Petrov, “High-flux Low-energy (~20 eV) N2+ Ion Irradiation during TiN Deposition by Reactive Magnetron Sputtering: Effects on Microstructure and Preferred Orientation,” J. Appl. Phys. 78, 5395 (1995).
15.F. Adibi, I. Petrov, J.E. Greene, L. Hultman, and J.E. Sundgren, “Effects of high-flux low-energy (20-100 eV) ion irradiation during deposition on the microstructure and preferred orientation of Ti0.5Al0.5N alloys grown by ultra-high-vacuum reactive magnetron sputtering”, J. Appl. Phys. 73, 8580 (1993).
16.J.E. Greene, J.E. Sundgren, L. Hultman, I. Petrov, and D.B. Bergstrom, “Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering”, Appl. Phys. Lett. 67, 2928 (1995).
17.J.S. Chun, I. Petrov, and J.E. Greene, “Dense Fully 111-Textured TiN Diffusion Barriers: Enhanced lifetime through microstructure control during layer growth,” J. Appl. Phys. 86, 3633 (1999).
18.D. Mclntyre, J.E. Greene, G. Håkansson, J.E. Sundgren, W.D. Münz, “Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: kinetics and mechanisms”, J. Appl. Phys. 67, 1542 (1990).
19.S.H. Lee, H.J. Ryoo, J.J. Lee, “(Ti1-xAlxN) coatings by plasma-enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 12, 1602 (1994).
20.K.H. Kim, S.H. Lee, “Comparative studies of TiN and Ti1-xAlxN by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N2/H2/Ar gas mixture”, Thin Solid Films 283, 165 (1996).
21.B.J. Kim, Y.C. Kim, and J. J. Lee, “The effect of NH3 plasma pre-treatment on the adhesion property of (Ti1-xAlx)N coatings deposited by plasma-enhanced chemical vapor deposition”, Surf. Coat. Technol. 114, 85 (1999).
22.S.H. Lee and J.J. Lee, “Compositionally gradient (Ti1-xAlx)N coatings made by plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A13, 2030 (1995).
23.李銀安, 受控熱融合, (牛頓出版社, 台北, 1996), 第三章, pp. 54-91.
24.B. Chapman, Glow discharge processes, (John Wiley & Sons, New York, 1985), chapter 1-5, pp. 1-175.
25.A. Grill, Cold plasma in materials fabrication, (IEEE press, New York, 1994), chapter 1, 2, pp. 1-45.
26.J.R. Roth, Industrial plasma engineering”, (IOP Publishing Ltd, London, 1995), chapter 10, pp. 352-390.
27.蕭宏, 半導體製程技術導論, (台灣培生教育出版, 台北, 2001), 第七章, pp.221-253.
28.S. Sivaram, Chemical vapor deposition, (ITP Inc., New York, 1995), chapter 6, 7, pp.119-162.
29.C.V. Thompson, “Structure evolution during processing of polycrystalline films”, Annu. Rev. Mater. Sci. 30, 159 (2000).
30.M. Murakami, P. Chaudhari, Thermal strain in lead thin films- dependence of the strain on crystal orientation” Thin Solid Films 46, 109 (1977).
31.A. Van der Drift, “Evolution selection, a principle governing growth orientation in vapor-deposited layers”, Philips. Res. Repts. 22, 267 (1967).
32.B.A. Movchan and A.V. Demchishin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide “ Fiz. Metal. Metalloved 28, 253 (1969).
33.J.A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol. 11, 666 (1974).
34.P.B. Barna and M. Adamik, “Fundamental structure forming phenomena of polycrystalline films and the structure zone models”, Thin Solid Films 317, 27 (1998).
35.M. Adamik, P.B. Barna, and I. Tomov, “Columnar structures in polycrystalline thin films developed by competitive growth”, Thin Solid Films 317, 64 (1998).
36.D.S. Rickerby and A. Matthews, Advanced surface coatings: a handbook of surface engineering, (Chapman and Hall, New York, 1991), chapter 7, pp. 162-193.
37.R. Feynman, “There's plenty of room at the bottom”, a talk at the annual meeting of the American Physical Society (Caltech, 1959).
38.H. Gleiter, “Nanostructured materials”, in Mechanical properties and deformation behavior of materials have ultra-fine microstructure, edited by M. Nastasi, D.M. Parkin, and H. Gleiter, (Kluwer Academic Publisher, Netherlands, 1993), p.7.
39.李言榮, 材料物理學概論, (清華大學出版社, 北京, 2001), p.39.
40.M. Ohring, The materials science of thin films, (Academic Press, San Diego, 1992), p.409.
41.S. Yip, “The strongest size”, Nature (London) 391, 532 (1998).
42.R.W. Siegel and G.E. Fougere, “Mechanical properties of nanophase metals”, Nanostructured Mater. 6, 205 (1995).
43.T.G. Nieh, J. Wadsworth, “Hall-Petch relation in nanocrystalline solids”, Script Metall. Mater. 25, 955 (1991).
44.H. Wang, A. Sharma, A. Kvit, Q. Wei, X. Zhang, C.C. Koch, and Narayan, “Mechanical properties of nanocrystalline and epitaxial TiN films on (100) silicon”, J. Mater. Res. 16, 2733 (2001).
45.J. Schiøtz, F.D.D. Tolla, and K.W. Jacobsen, “Softening of nanocrystalline metals at very small grain sizes”, Nature (London) 391, 561 (1998).
46.J. Karch, R. Birringer, and H. Gleiter, “Ceramics ductile at low temperature”, Nature (London) 330, 556 (1987).
47.S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, and A.K. Mukherjee, “Low-temperature superplasticity in nanostructured nickel and metal alloy”, Nature 398 (London), 684 (1999).
48.S.X. McFadden, A.P. Zhilyaev, R.S. Mishra, and A.K. Mukherjee, “Observations of low-temperature superplasticity in electrodeposited ultrafine grained nickel”, Mat. Lett. 45, 345 (2000).
49.L. Lu, M.L. Sui, and K. Lu, “Superplastic extensibility of nanocrystalline copper at room temperature”, Science 287, 1463 (2000).
50.L. Lu, M.L. Sui, and K. Lu, “Superplasticity extensibility and deformation mechanism of a nanocrystalline copper sample”, Adv. Eng. Mat. 3, 663 (2001).
51.L. Lu, M.L. Sui, and K. Lu, “Cold rolling of bulk nanocrystalline copper”, Acta. Mater. 49, 4127 (2001).
52.L. Lu, L.B. Wang, B.Z. Ding, and K. Lu, “High-tensile ductility in nanocrystalline copper”, J. Mat. Res. 15, 270 (2000).
53.J. Shieh, H.L. Wang, M. S. Tsai, and M. H. Hon, “Functionally gradient PECVD Ti(C,N) coatings”, Mat. Res. Soc. Symp. Proc. 555, 407 (Boston, 1999).
54.E.A. Brandes, Smithell’s Metals Reference Book, (Butterworth, Cornwall, 1983), p. 8-56.
55.E.A. Brandes, Smithell’s Metals Reference Book, (Butterworth, Cornwall, 1983), p. 8-61.
56.B.D. Cullity, Elements of X-ray diffraction, (Addison-Wesley Publishing Co., Inc., Massachusetts, 1978), p. 102.
57.許樹恩、吳泰伯, X光繞射原理與材料結構分析, (中國材料科學學會, 新竹, 1996), p. 422.
58.W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater Res. 7, 1564 (1992).
59.G.M. Pharr and W.C. Oliver, “Measurement of thin film mechanical properties using nanoindentation”, MRS Bulletin 17, 28 (1992).
60.P. A. Steinmann, Y. Tardy, and H. E. Hintermann, “Adhesion Testing by the Scratch Test Method: the Influence of Intrinsic and Extrinsic Parameters on The Critical Load,” Thin Solid Films 154, 333 (1987).
61.C. S. Barrett and T. B. Massaalski, “Pole Figures and Orientation Determination”, in Structure of Metals, (Pergamon Press, Oxford, 1980), p. 204.
62.H. Shibata, M. Murota, and K. Hashimoto, “Effects of Al(111) Crystal Orientation on Electromigration in Half-micron Layered Al Interconnects,” Jpn. J. Appl. Phys. Part1 32, 4479 (1993).
63.S. Vepřek, “Plasma-Induced and Plasma-assisted Chemical Vapor Deposition,” Thin Solid Films 130, 135 (1985).
64.H. E. Cheng, M. J. Chiang, and M. H. Hon, ”Growth Characteristics and Properties of TiN Coating by Chemical Vapor Deposition”, J. Electrochem. Soc. 142, 1573 (1995).
65.J.E. Greene, “Low-energy ion/surface interactions during crystal growth from the vapor phase: effects on nucleation and growth, defect creation and annihilation, microstructure evolution, and synthesis of metastable phases”, in Handbook of crystal growth, vol. 1, edited by D.T.J. Hurle, (Elsevier Science Publishers, Amsterdam, 1993) chapter 9, pp. 640-681.
66.G. Levi, W. D. Kaplan, M. Bamberger, “Structure Refinement of Titanium Carbonitride (TiCN)”, Materials Letters 35, 344 (1998).
67.D. J. Kim, Y. R. Cho, M. J. Lee, J. M. Hong, Y. K. Kim, and K. H. Lee, “Properties of TiN-TiC multiplayer coatings using plasma-assisted chemical vapor deposition”, Surf. Coat. Technol. 116-119, 906 (1999).
68.D. H. Jang, J. S. Chun, and J. G. Kim, “The Deposition Rate and Properties of the Deposit in Plasma Enhanced Chemical Vapor Deposition of TiN,” J. Vac. Sci. Technol. A7, 31 (1989).
69.N. B. Ming and I. Sunagawa, “Twin Lamellae as Possible Self-perpetuating Step Sources,” J. Crystal Growth 87, 13 (1988).
70.H. E. Cheng and M. H. Hon, “Texture formation in titanium nitride films prepared by chemical vapor deposition,” J. Appl. Phys. 79, 8047 (1996).
71.K. Han and G. C. Weatherly, “Transmission Electron Microscopy Investigation of Twinning in Titanium Carbonitride,” Phil. Mag. Lett., 76247 (1997).
72.Y.J. Liu, H.J. Kim, Y. Egashira, H. Kimura, H. Komiyama, “Suppressing the formation of cone structures in chemical-vapor-deposited aluminum nitride/titanium nitride films”, J. Am. Ceram. Soc. 79, 1335 (1996).
73.G. Håkansson, J.E. Sundgren, D. Mcintyre, J. E. Greene, W.D. Münz, “Microstructure and physical properties of polycrystalline metastable Ti0.5Al0.5N alloys grown by d. c. magnetron sputter deposition”, Thin Solid Films 153, 55 (1987).
74.U. Wahlström, L. Hultman, J.E. Sundgren, F. Adibi, I. Petrov, J.E. Greene, “Crystal growth and microstructure of polycrystalline Ti1-xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering, Thin Solid Films 235, 62 (1993).
75.C. Jiménez, C.S. Fernández, J.M.M. Duart, M. Fernández, J.S. Olías, “Dependence of the mechanical and structural properties of (Ti,Al)N films on the nitrogen content”, J. Mater. Res. 14, 2830 (1999).
76.J. Musil, H. Hrubý, “Superhard nanocomposite Ti1-xAlxN films prepared by magnetron sputtering”, Thin Solid Films 365, 104 (2000).
77.Y.H. Cheng, B.K. Tay, S.P. Lau, X. Shi, and H.C. Chua, “Characterization of (Ti,Al)N films deposited by off-plane double bend filtered cathodic vacuum arc”, J. Vac. Sci. Technol. A19, 557 (2001).
78.Y.H. Cheng, B.K. Tay, S.P. Lau, and X. Shi, “Raman spectroscopy and x-ray diffraction studies of (Ti,Al)N films deposited by filtered cathodic vacuum arc at room temperature”, J. Appl. Phys. 89, 6192 (2001).
79.S.H. Lee, B.J. Kim, H.H. Kim, J.J. Lee, “Structure analysis of AlN and (Ti1-xAlx)N coatings made by plasma enhanced chemical vapor deposition”, J. Appl. Phys. 80, 1469 (1996).
80.B.J. Kim, S.H. Lee, J.J. Lee, “Adhesion, oxidation and wear properties of compositionally gradient (Ti1-xAlx)N coatings made by plasma enhanced chemical vapor deposition“ J. Mat. Sci. Lett. 16, 1597 (1997).
81.B.J. Kim, Y.C. Kim, J.W. Nah, J.J. Lee, “High temperature oxidation of (Ti1-xAlx)N coatings made by plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. A 17, 133 (1999).
82.C.W. Kim, K.H. Kim, “Anti-oxidation properties of TiAlN film prepared by plasma-assisted chemical deposition and roles of Al”, Thin Solid Films 307, 113 (1997).
83.K. Bartsch, A. Leonhardt, U. Langer, K. Kunanz, “New PACVD-hard material layers for wear protection of high-speed steel”, Surf. Coat. Technol. 94-95, 168 (1997).
84.D. Heim, R. Hochreiter, “TiAlN and TiAlCN deposition in an industrial PaCVD-plant”, Surf. Coat. Technol. 98, 1553 (1998).
85.C. Jarms, H.-R. Stock, P. Mayr, “Mechanical properties, structure and oxidation behavior of Ti1-xAlxN-hard coatings deposited by pulsed d.c. plasma-assisted chemical vapor deposition (PACVD)”, Surf. Coat. Technol. 108-109, 206(1998).
86.S. Anderbouhr, V. Ghetta, E. Blanquet, C. Chabrol, F. Schuster, C. Bernard, “LPCVD and PACVD (Ti,Al)N films: morphology and mechanical properties”, Surf. Coat. Technol. 115, 103 (1999).
87.O. Knotek, T. Leyendecker, “On the structure of (Ti,Al)N-PVD coatings”, J. Solid State Chem.70, 318 (1987).
88.H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures For Polycrystalline and Amorphous Materials, (Wiley, New York, 1974), chapter 9, pp.618-708.
89.A.S. Nowick, S.R. Mader, “A hard-sphere model to stimulate alloy thin films”, IBM J. Res. Dev. 9, 358 (1965).
90.O. Knotek, F. Loffler, L. Wolkers, “Crystallization of amorphous metastable ceramic PVD-coatings, Mat. Res. Soc. Symp. Proc. 321, 621(1994).
91.E.T. Kang, K.G. Neoh, Y.K. Ong, K.L. Tan, B.T.G. Tan, “X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative Fe(III) salts”, Macromolecules 24, 2822 (1991).
92.P.B. Mirkarimi, D.L. Medlin, K.F. McCarty, D.C. Dibble, W.M. Clift, J.A. Knapp, J.C. Barbour, “Synthesis, characterization, and mechanical properties of thick, ultrahard cubic boron nitride films deposited by ion-assisted sputtering”, J. Appl. Phys. 82, 1617 (1997).
93.S. Vepřek, S. Reiprich, L. Shizhi, “Superhard nanocrystalline composite materials: the TiN/Si3N4 system”, Appl. Phys. Lett. 66, 2640 (1995).
94.T.D. Shen, C.C. Koch, T.Y. Tsui, G.M. Pharr, “On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu-Ni alloys prepared by mechanical milling/alloying”, J. Mater. Res. 10, 2892 (1995).
95.M.L. Cohen, “The theory of real materials”, Annu. Rev. Mat. Sci. 30, 1 (2000).
96.D. Briggs and M.P. Seah, Pratical Surface Analysis, (John Willey & Sons, Chichester, 1993), p. 599.
97.R. Bertoncello, A. Casagrande, M. Casarin, A. Glisenti, E. Lanzoni, L. Mirenghi, E. Tondello, “TiN, TiC and Ti(C,N) film characterization and its relationship to tribological behaviour” Surface and Interface Analysis 18, 523 (1992).
98.K. Hamrin, G. Johansson, A. Fahlman, C. Nordling, “Charge transfer in transition metal carbides and related compounds studied by esca” J. Phys. Chem. Solids 30, 1835 (1969).
99.H.M. Liao, R.N.S. Sodhi, T.W. Coyle, “Surface composition of AlN powders studied by x-ray photoelectron spectroscopy and bremsstrahlung-excited Auger electron spectroscopy”, J. Vac. Sci. Technol. A 11, 2681 (1993).
100.P. Martin, R. Netterfield, T. Kinder, A. Bendavid, “Optical properties and stress of ion-assisted aluminum nitride thin films”, Appl. Optics 31, 6734 (1992).
101.J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S.R.P. Silva, “Raman spectroscopy on amorphous carbon films”, J. Appl. Phys. 80, 440 (1996).
102.A. C. Ferrari, and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon” Phys. Rev. B 61, 14095 (2000).
103.B. Racine, A.C. Ferrari, N.A. Morrison, I. Hutchings, W.I. Milne, and J. Robertson, “Properties of amorphous carbon-silicon alloys deposited by a high plasme density source”, J. Appl. Phys. 90, 5002 (2001).
104.M. Diserens, J. Patscheider, and F. Lévy, “Improving the properties of titanium nitride by incorporation of silicon” Surf. Coat. Technol. 108-109, 241 (1998).
105.J. T. Scheper, K. W. Mesthrige, J. W. Proscia, G.Y. Liu, and C.H. Winter, “Atmospheric pressure chemical vapor deposition of titanium aluminum nitride films” Chem. Mater. 11, 3490 (1999).
106.R. Wuhrer, W.Y. Yeung, M.R. Phillips, and G. McCredie, “Study on dc magnetron sputter deposition of titanium aluminium nitride thin films: Effect of aluminium content on coating” Thin Solid Films 290, 339 (1996).
107.B. H. Park, Y.I. Kim, and K. H. Kim, “Effect of silicon addition on microstructure and mechanical property of titanium nitride film prepared by plasma-assisted chemical vapor deposition” Thin Solid Films 348, 210 (1999).
108.S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. Jílek, and M. Šíma, “Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness” Surf. Coat. Technol. 108-109, 138 (1998).
109.S. Vepřek, “The search for novel, superhard materials”, J. Vac. Sci. Technol. A 17, 2401 (1999).
110.S. Vepřek, A. Niederhofer, K. Moto, T. Bolom, H.D. Mannling, P. Nesládek, G. Dollinger, and A. Bergmaier, “Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with H-v=80 to <= 105 GPa”, Surf. Coat. Technol. 133, 152 (2000).
111.W.J. Meng, E.I. Meletis, L.E. Rehn, and P.M. Baldo, “Inductively coupled plasma assisted deposition and mechanical properties of metal-free and Ti-containing hydrocarbon coatings” J. Appl. Phys. 87, 2840 (2000).
112.A.A. Voevodin, S.V. Prasad, and J.S. Zabinski, “Nanocrystalline carbide/amorphous carbon composite”, J. Appl. Phys. 82, 855 (1997).
113.A.A. Voevodin and J.S. Zabinski, “Supertough wear-resistant coatings with chameleon surface adaptation”, Thin Solid Films 370, 223 (2000).
114.S. Christiansen, M. Albrecht, H.P. Strunk, S. Veprek, “Microstructure of novel superhard nanocrystalline amorphous composites as analyzed by high resolution transmission electron microscopy” J. Vac. Sci. Technol. B16, 19 (1998).
115.B.K. Tay, Y.H. Cheng, X.Z. Ding, S.P. Lau, X. Shi, G.F. You, and D. Sheeja, “Hard carbon nanocomposite films with low stress”, Diamond Relat. Mater. 10, 1082 (2001).
116.J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin, “Separation of the sp3 and sp2 components in the C 1s photoemission spectra of amorphous carbon”, Phys. Rev. B 54, 8064 (1996).
117.S. Hirono, S. Umemura, M. Tomita, and R. Kaneko, “Superhard conductive carbon nanocrystalline films”, Appl. Phys. Lett. 80, 425 (2002).
118.P.J. Burnett and D.S. Rickerby, “The relationship between hardness and scratch adhesion”, Thin Solid Films 154, 403 (1987).
119.盧柯、盧磊, ”金屬納米材料力學性能的研究進展”, 金屬學報 36, 785 (2000).
120.M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis, “Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films”, Nanostructured Mat. 5, 689 (1995).
121.B.N. Kim, K. Hiraga, K. Morita, and Y. Sakka, “A high-stain-rate superplastic ceramic” Nature (London) 413, 288 (2000).
122.D.G. Morris, Mechanical behaviour of nanostructured materials, (Trans Tech, Switzerland, 1998), p.18.
123.R.W. Siegel and G.E. Fougere, “Mechanical properties of nanophase materials”, in Nanophase materials, synthesis, properties, applications, edited by G.C. Hadjipanayis and R.W. Siegel, (Kluwer Academic Publishers, Boston, 1994), pp. 233-261.
124.W.J. Clegg, “Controlling cracks in ceramics”, Science 286, 1097 (1999).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔