跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:甯超群
研究生(外文):Chao-Chin Ning
論文名稱:多孔性磷酸鈣鹽之製程與性質研究
論文名稱(外文):Processing and Properties of Porous Calcium Phosphate Ceramics
指導教授:陳瑾惠朱建平朱建平引用關係
指導教授(外文):Jiin-Huey ChernChien-Ping Ju
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:90
語文別:中文
論文頁數:108
中文關鍵詞:孔隙度磷酸鈣鹽
外文關鍵詞:porouscalcium phosphate ceramics
相關次數:
  • 被引用被引用:2
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要
組織工程的目的為:利用多孔性的支架(scaffold)來模擬人體原有的extracellular matrix,使細胞附著、增生、遷移,然後產生功能,以重建缺損的組織或器官。氫氧基磷灰石(HA)具有良好的生物相容性與生物活性,植入人體後不會引起毒性,不刺激組織,具有引導骨骼相內生長,及在骨骼外組織誘導骨細胞分化生長的能力。利用磷酸鈣鹽泥(Calcium phosphate ceramic slurry)製成的多孔性HA磷酸鈣鹽具有適當的強度,能控制其孔洞大小、孔隙度,可消毒,也具有生物可吸收性,磷酸鈣鹽泥的可塑性並能製出3-D不規則的立體結構,是一種適合作為組織工程支架的材料。
本研究將磷酸鈣鹽泥混合NaCl粉末填模加壓成型,利用salt leaching方式製成多孔性HA磷酸鈣鹽,並改變不同製程條件來同時提高材料的抗壓強度與孔隙度,同時以SEM觀察材料表面形態,並以XRD分析不同製程條件與不同添加物含量對磷酸鈣鹽組成的影響,最後進行PH值量測及細胞測試,期望能獲得一個適合應用於組織工程的scaffold。
實驗發現磷酸鈣鹽泥中NaCl的含量增加,能提高磷酸鈣鹽的孔隙度,但卻使抗壓強度降低。加長磷酸鈣鹽泥的浸泡時間,或利用適當條件的熱處理能將磷酸鈣鹽的強度提高,同時不影響材料孔隙度與結晶性差的apatite相。細胞測試發現,當磷酸鈣鹽孔隙度高,細胞容易附著,細胞毒性也低。因此利用磷酸鈣鹽泥混合水溶性鹽類,浸泡後加上適當熱處理,利用磷酸鈣鹽泥中原本就有的微孔洞加上salt leaching產成的巨孔洞,形成一巨孔微孔同時存在的高孔隙度結構,加速磷酸鈣鹽吸收與新骨生長並具有一定的強度,非常有潛力成為軟骨/硬骨重建的組織工程支架。
總目錄

致謝……………………………………………………………………3
摘要……………………………………………………………………4
總目錄…………………………………………………………………5
表目錄…………………………………………………………………8
圖目錄…………………………………………………………………9
第一章 前言與研究目的………………………………………………12
1-1 簡介……………………………………………………………...12
1-2 研究目的……………………………………………...…………13
第二章 理論基礎與文獻回顧…………………………………………15
2-1 生醫陶瓷的種類………………………………………………...15
2-2 氫氧基磷灰石(hydroxyapatite;HA)[Ca10(PO4)6(OH)2]……15
2-2-1 氫氧基磷灰石(HA)的特性……………………………..15
2-2-2 氫氧基磷灰石結構中的離子取代現象…………………...16
2-3 塊狀氫氧基磷灰石燒結製程與性質…………………………..16
2-4 多孔性磷酸鈣陶瓷……………………………………………...18
2-5 組織工程………………………………………………………...19
2-5-1 組織工程簡介……………………………………………...19
2-5-2 軟骨/硬骨組織工程支架的特性與需求…………………..20
2-5-3 組織工程支架材料………………………………………...21
2-5-4 組織工程支架的做法……………………………………...22
2-6 磷酸鈣鹽PH值…………………………………………………23
2-7 細胞毒性………………………………………………………...24
第三章 實驗方法與步驟………………………………………………31
3-1 試片準備………………………………………………………..31
3-1-1 多孔性試片製備…………………………………………...31
3-1-2 抗壓強度與孔隙度試片製備……………………………..31
3-1-3 試片熱處理………………………………………………..31
3-2 材料分析與測試………………………………………………..32
3-2-1 抗壓強度測試(Compressive strength)…………………32
3-2-2 孔隙度測試(Porosity)…………………………………..32
3-2-3 X光繞射(XRD)…………………………………………32
3-2-4 掃描式電子顯微鏡分析(SEM)…………………………33
3-3 PH值測試………………………………………………………..33
3-4 細胞測試………………………………………………………...33
3-4-1 細胞培養(Cell culture)……………………………….…33
3-4-1-1 實驗前預備……………………………….…………...34
3-4-1-2 細胞冷凍管解凍………………………………………34
3-4-1-3 細胞培養………………………………………………34
3-4-1-4 細胞冷凍(Cell freezing)……………………………35
3-4-2 細胞毒性測試(Cytotoxicity)……………………………35
3-4-3 細胞附著性測試(Bioaffinity)……………………………36
第四章 結果與討論……………………………………………………..47
4-1 浸泡處理後的多孔性磷酸鈣鹽………………………………...47
4-1-1 抗壓強度測試……………………………………………...47
4-1-2 孔隙度測試…………………………………………….…..50
4-2 熱處理後的多孔性磷酸鈣鹽…………………………………...73
4-2-1 抗壓強度………………………………….………………..73
4-2-2 熱處理後的孔隙度……………………….………………..74
4-3 PH值測試……………………….………………………………87
4-4 細胞測試………………………………………………………...94
4-4-1 細胞毒性測試……………………………………………...94
4-4-2 細胞附著性測試…………………………………………...95
第五章 結論……………………………………………………….…...100
第六章 參考文獻………………………………………………………102
表目錄

表1-1 氫氧基磷灰石(HA)植入材的發展………………………….14
表2-1 氫氧基磷灰石燒結方法………………………………………..25
表2-2 生物吸收性高分子聚合物……………………………………..26
表2-3 多孔性磷酸鈣鹽的製法、孔隙度與孔洞尺寸…………………27
表3-1 多孔性試片製備的溫度與時間參數…………………………..37
表3-2 Hank’s solution成份表………………………………………….39
表3-3 細胞培養測試所需溶液與器材列表…………………………..40
表3-4 食品工業發展研究所菌種中心/國家衛生研究院細胞庫細胞株資料單……………………………………………………………41
表4-2-1 不同NaCl含量試片,熱處理前後的孔隙度(%)……….76
表4-3-1 不同製程條件下,不同NaCl含量試片的PH值………….89
圖目錄

圖2-1 商用氫氧基磷灰石粉末與不同形態、尺寸的多孔質塊狀氫氧基磷灰石示意圖……………………………………………………29
圖2-2 常用於組織工程支架的生物降解性高分子聚合物…………..30
圖2-3 Cleavage of the tetrazolium salt WST-1 to formazan……….…..30
圖3-1 多孔性磷酸鈣鹽製程與測試分析流程………………………..42
圖3-2 Cell culture更換細胞培養基溶液步驟流程……………………43
圖3-3 Cell culture細胞繼代步驟流程…………………………………44
圖3-4 細胞冷凍步驟流程……………………………………………..45
圖3-5 細胞毒性測試步驟流程………………………………………..46
圖4-1-1 不同含量NaCl(未過篩),T2浸泡t4的抗壓強度…………53
圖4-1-2 不同含量NaCl(未過篩),T2浸泡t5的抗壓強度…………54
圖4-1-3 不同NaCl含量試片,T2去離子水浸泡的強度比較………55
圖4-1-4 不同含量NaCl,T2浸泡t4的抗壓強度比較……………….56
圖4-1-5 不同含量NaCl(未過篩),T3浸泡t2的抗壓強度…………57
圖4-1-6 不同含量NaCl(未過篩),T3浸泡t4的抗壓強度…………58
圖4-1-7 NaCl含量W3的試片,T3浸泡不同天數的抗壓強度………59
圖4-1-8 不同NaCl含量,不同浸泡溫度的抗壓強度比較………….60
圖4-1-9 不同NaCl含量,T3浸泡t2的抗壓強度…………………….61
圖4-1-10 NaCl含量W3的試片,T1浸泡的抗壓強度………………..62
圖4-1-11 NaCl含量W3的試片,不同溫度下浸泡的抗壓強度變化…63
圖4-1-12 NaCl含量W3的磷酸鈣鹽試片,不同溫度浸泡t4的SEM照片……………………………………………………………64
圖4-1-13 不同含量NaCl(未過篩),T2浸泡不同天數的孔隙度….65
圖4-1-14 不同NaCl含量(未過篩)試片,T2浸泡的孔隙度比較..67
圖4-1-15 不同NaCl含量(未過篩)試片,T2溫度浸泡t2時間與含NaCl未浸泡的SEM照片………………………………….68
圖4-1-16 不同NaCl含量(未過篩)試片,T2溫度浸泡t4時間的SEM照片…………………………………………………………69
圖4-1-17 NaCl含量W6(未過篩)試片,T2溫度浸泡t4時間,試片巨孔洞與微孔洞的SEM照片………………………………..70
圖4-1-18 不同含量NaCl(未過篩),T3浸泡不同天數的孔隙度….71
圖4-1-19 不同NaCl含量試片,T3浸泡的孔隙度變化……………..72
圖4-2-1 NaCl含量W2(未過篩)試片,T2浸泡t4後,不同溫度Ht5熱處理的抗壓強度比較……………………………………..76
圖4-2-2 NaCl含量W3(未過篩)試片,T2浸泡t4後,不同溫度Ht5熱處理的抗壓強度比較……………………………………..77
圖4-2-3 NaCl 含量W2/W3的試片,T2浸泡t4,不同溫度熱處理Ht5的SEM照片…………………………………………………….78
圖4-2-4 HT4熱處理Ht5對T2浸泡t4試片抗壓強度的影響…………79
圖4-2-5 HT4熱處理Ht5對T3浸泡t2試片抗壓強度的影響…………80
圖4-2-6 NaCl含量W3的試片,T2浸泡t4,HT4熱處理不同時間的抗壓強度比較…………………………………………………..81
圖4-2-7 含W3 NaCl試片,T2浸泡t4,HT4熱處理不同時間的SEM照片…. ……………………………………………………….82
圖4-2-8 NaCl含量W3的試片,T2浸泡t4,HT1熱處理不同時間的抗壓強度………………………………………………………...85
圖4-2-9 HT9熱處理不同時間對T2浸泡t4試片的抗壓強度的影響…86
圖4-3-1 不同NaCl含量試片,T2浸泡t4,HT4熱處理Ht5的PH值變化……………………………………………………….……..89
圖4-3-2 不同NaCl含量試片,T2浸泡t5的PH值變化……………90
圖4-3-3 不同NaCl含量試片,T3浸泡t2的PH值變化……………91
圖4-3-4 不同NaCl含量試片,T3浸泡t2,HT4熱處理Ht5的PH值變化……………………………………………………….…….92
圖4-4-1 淬取液的細胞毒性測試……………………………………...97
圖4-4-2 細胞在不同材料淬取液中培養24hrs後的細胞形態………98
圖4-4-3 不同製程條件的磷酸鈣鹽試片的生物附著性……………...99
圖4-4-4熱處理前後試片表面形態…………………………………..100
參考文獻

Berridge M. V. et al., “The biomedical and cellular basis of cell proliferation assays that use tetrazolium salts”, Biochemical, 4, p.15-19, 1996
Borden M., Attawia M., Khan Y., Laurencin C. T., “Tissue engineered microsphere-based matrices for bone repair:design and evaluation”, Biomaterials, 23(2), p.551-559, 2002
Brown W. E., Chow L.C., ”A new calcium phosphate setting cement”, J. Dent. Res., Abstract 207, 1983
Bu Park J., “Biomaterials science and engineering” p. 131, 1984
Chaignaud B. E., Langer R., Vacanti J. P., “The history of tissue engineering using synthetic biodegradable polymer scaffolds and cells”, Boston : Birkhauser, p.1-14, 1997
Chang B. S., Lee C. K., Hong K. S., Youn H. J., Ryu H. S., Chung S. S., Park K. W., “Osteoconduction at porous hydorxyapatite with various pore configurations”, Biomaterials, 21, p.1291-1298, 2000
Chen C. S., Yannas I. V., Spector M., Biomaterials, p.777-783, 1995
Chakkalakal D. A., Mashoof A. A., Novak J., Strates B. S., McGuire M. H., “Mineralization and PH relationship in healing skeletal defects grafted with demineralized bone matrix”, J. Biomed. Mater. Res., 28, p.1439-1443, 1994
Christel K., K. de Groot, Chen W., Li Y. and Zhang X., “Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues”, Biomaterials, 15(1), p. 31-34, 1994
Cory A. H. et al., Cancer Commun, 3, p.207-212, 1991
Constantz B. R., Barr B. M., Quiaoit J. and Ison I. C., Forth World Biomaterials Congress, Berlin, Abstract 56, 1992
Daculsi G., LeGeros RZ. and Heughebaert M., ”Formation of carbonate apatite crystals after implantation of calcium phosphate ceramics”, Calcif. Tiss. Int, 46, p.20-27, 1990
de Groot K., “Ceramics of calcium phosphates:preparation and properties”, p. 99, 1983
de Groot K., “Bioceramics of calcium posphate”, Boca Raton Florida, CRC Press, 1983
de Groot K., C.P.A.T. Klein, J.G.C. Wolke, and J.M.A. de Blieck-Hogervorst, "Chemistry of Calcium phosphate bioceramics", pp.3-16, in “Handbook of Bioactive Ceramics Vol.II”, edited by T. Yamamuro, L.L. Hench and J. Wilson, CRC Press, Boca Raton, FL, (1990).
de Lange G. L. and Donath L., “Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite coated titanium implants”, Biomaterials, 10, p. 121-125, 1989
de With G., H.J.A. Vandijk, N. Hattu, and K. Prijs, “Preparation, microstructure and mechanical and mechanical properties of dense polycrystalline hydroxyapatite”, J. Mater. Sci., 16:1592-1598, 1981.
Denissen H. W., H.J.A. Van Dijk, K. de Groot, P.J. klopper, J.P.W. Vermeiden, and A.P. Gehring, “Biological and mechanical evaluation of dense calcium hydroxyapatite made by continuous hot pressing”, pp.489-505, in “Mechanical Properties of Biomaterials”, G.W. Hastings and D.P. Williams, John Wiley & Sons Ltd., (1980).
Dietmar W. H., ”Scaffolds in tissue engineering bone and cartilage”, Biomaterials, 21, p.2529-2543, 2000
Dreesman H., Uber Knohenplombierung Beitre, Klin. Chir., 9, p.804-807, 1982
Driessens F. C. M., Boltong M. G., Bermudez O., Planell J. A., Ginebra M. P. and Fernandez E., “Effective formulations for the precipitation of calcium phosphate bone cements”, J. Mat. Sci : materials in medicine, 5, p.164-170, 1994
El Deeb M. E., Hosny M. and Sharawy M., “Osteogenesis in composite grafts of allogenic demineralized bone powder and porous hydroxyapatite”, J. Oral maxillofac. Surg, 47, p.50-56, 1989
Fabbi, M., Celotti G. C. and Raraglioli A., “Hydroxyapatite-based porous aggregates:Physico-chemical nature, structure, texture and architecture”, Biomaterials, 16, p. 225, 1995
Fang Y., D.K. Agrawal, D.M. Roy, and R. Roy, “Fabrication of porous hydroxyaptite ceramics by microwave processing”, J. Mater. Res., 7, p.490-494, 1992.
Fukase F., Eanes E. D., Takagi S., Chow L.C. and Brown W. E., “Setting reactions and compressive strength of calcium phosphate cements”, J. Dent. Res., 69(12), p. 1852-1856, 1990
Gliding D. K., in Biocompatibility of Clinical Implant Materials(Williams D. F., ed.), p.209-232, 1981
Goshima J., Goldberg V. M. and Caplan A., ”Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramics”, Biomaterials, 12, p.253-258, 1991
Hamanishi C., Kitamoto K., Ohura K., Tanaka S., Doi Y., “Self setting, bioactive, and biodegradable TTCP-DCPD apatite cement”, J Biomed Mater. Res, 32, p.383-389, 1996
Hench L. L., ”Bioceramics:From concept to cline”, J. Am. Ceram. Soc., 74(7), p. 1487-1510, 1991
Heughebaert M., Le Geros R. Z., Gineste M., Guihem A. and Bonel G., “Physiochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites”, J. Biomed. Mat. Res., 22, p.257-268, 1988
Hirayama, Yasuhiko, “Process for producing calcium phosphate ceramics having porous surface”, United States Patent : US5017518, 1991
Hirota K., Y.T. asegawa, and H. Monma, “Densification of hydroxyapatite by hot isostatic pressing”, Yogyo-Kyokai-Shi, 90, p.680-682, 1982.
Hulbert S. F., Klawitter J. J. and Leonard R. B., In ceramics in severe environments, ed. Kriegel W. W. and Palmour H., New York, p.417, 1971
Hulbert S. F., Yamamuro T., Hench L. L. and Wilson J., ”Bioactive ceramic-bone interface”, CRC Handbook of Bioactive Ceramics, vol. 1, ed. p. 3-6, 1991
Ishikawa K., Kuwayama N., Takagi S, Chow L. C., “The development of fast-setting calcium phosphate cement”, Jap. J. Dent. Mater., 12, p.222-223, 1993
Ishiyama M. et al., In Vitro Toxicology, 8, p.187-189, 1995
Jarcho M., C.H. Bolen, M.B. Thomas, J. Bobick, J.F. Kay, and R.H. Doremus, “Hydroxyapatie synthesis and characterization in dense polycrystalline form”, J. Mater. Sci., 11, p.2027-2035, 1976.
Jarcho M., ”Calcium phosphate ceramics as hard tissue prosthetics”, Clin. Orthop., 157, p.259-278, 1981
Juang H. Y. and M.H. Hon, “Effect of calcination on sintering of hydroxyapatite“, Biomaterials, 17:2059-2064, 1996.
Langer R., Vacanti J. P., ”Tissue engineering”, Science, 260, p.920-926, 1993
Le Huec J. C., Schaeverbeke T., Clement D., Faber J. and Le Rebeller A., ”Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress”, Biomaterials, 16, p.113, 1995
Levene et al., “Porous polymer scaffolds for tissue engineering”, United States Patent : US6103225, 1999
Lhommeau C., Levene H., Abramson S., Kohn J., Tissue Eng., 4, p.468, 1998
Lin F. H., Lin C. C., Liu H. C., Huang Y. Y., Wang C. Y. and Lu C. M., “Sintered porous DP-bioglass and hydroxyapatite as bone substitute”, Biomaterials, 15(13), p.1087-1097, 1994
Li S., Garreau H., Vert M., ”Structure-property relationship in the case of the degradation of massive aliphatic poly(α-hydroxy acids) in aquious media. Part 1:poly(D,L-lactic acid)”, J. Mat. Sci.:Mat. Med., 1, p.123, 1990
Liu D. M., “Influence of porosity and pore size on the compressive strength of porous hydroxyapatite ceramics”, Cer. Int., 23, p. 135-139, 1997
Lu L., Mikos A. G., MRS Bulletin, 21(11), p.28-31, 1996
Ma et al., ”Fibrillar matrices”, United States Patent : US6146892, 1998
Meaes D. C., “Metals in medicine and surgery”, Int. Metals Rev.:Review 218, 1977
Mirtchi A. A., Lemaitre J. and Terao N., Biamaterials 10, p. 475, 1985
Monma H., Makishima A., Mitomo M. and Ikegami T., Nippon Seramikkusu Kyokay Gakujutsu Ronbushi 96, p. 878, 1988
Mooney D. J. and Langer R., in The Biomedical Engineering Handbook(Brozino J. D. ed.), p.1609-1618
Mosmann T., J. Immunol. Methods, 65, p.55-63, 1983
Nakjima H., Monma H., Goto M. and Hashimoto H., ”Properties of α-tricalcium phosphate-polycarboxylic acid mixture and apatite formation”, J. Dent. Res., 65(special issue), Abstract 213, 1986
Naughton G. K. et al., ”Emerging developments in tissue engineering and cell technology”, Tissue Eng., 1(2), p.211-219, 1995
Ohgushi H., Okumura M. and Tamai S., “Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate:A comparative histomorphometric study of ectopic bone formation”, J. Biomed. Mat. Res., 24, p.1563-1570, 1990
Park A., Wu B., Griffite L. G., J. Biomat. Sci.-Polymer, 9, p.89-110, 1998
Peelin J. G. J., B.V. Rejda, and K. de Groot, “Preparation and properties of sintered hydroxyapatite”, Ceramur. Internat., 4:71-74, 1978.
Rahn B. A., Neff J., Leutenegger A., Mathys R. and Perren S. M., “Integration of synthetic apatite of various pore size and porosity in bone”, In biological and biomechanical performance of biomaterials, p.21, 1989
Roehm N. W. et al., J. Immunol. Methods, 142, p.257-265, 1991
Wakamatsu N., T. Goto, H. Kamemizu, M. Iijima, Y. Takezawa, H. Mizuguchi, S. Imura, K. Hayashi, S. Shibata, Y. Doi, and Yutaka, “Effect of Li3PO4 addition on sintering of hydroxyapatite”, J. Ceram. Soc. Jpn. Inter. Ed., 95, p.780-782, 1987.
Wallin R. F and Arscott E. F., ”A practical duide to ISO 10993-5 : Cytotoxicity”, an MD&DI April 1998 Column
Schugens C., Maguet V., Grandfils C., jerome R., Teyssie P., “Poly-lactide macroporous biodegradable implants for cell transplantation 2. Preparation of polylactide foam by liquid-liquid phase separation”, J. Biomed. Mat. Res., 30, p.449-461, 1996
Thomson R. C., Wake M. C., Yaszemski M. J. and Mikos A. G., ”Biodegradable polymer scaffolds to regenerate organs”, Adv. Polym. Sci., 122, p.245-274, 1995
Thompson D. E., Agrawal C. M. and Athanasiou K., “The effects of dynamic compressive loading on biodegradable implants of 50-50% polylactic acid-polyglycolic acid”, Tissue Eng., 2(1), p.61-74, 1996
Van Blitterswijk C. A., Hesseling S. C., Grote J. J., Koerten H. K. and de Groot K.,” The biocompatibility of hydroxyapatite ceramics:A study of retrieved human middle ear implants”, J. Biomed. Mat. Res., 24, p.433-43, 1990
Vieth W. R., ”Diffusion in and through polymers : prinsciples and applications”, 1991
Wallin R. F. and E. F. Arscott, A Partial Guide to ISO 10993-5:Cytotoxicity
Yamasaki H. and Sakai H., “Osteogenic response to porous Hydroxyapatite ceramics under the skin of dogs”, Biomaterials, 13(5), p.308-312, 1992
Yaszemski M. J., Payne R. G., Hayes W. C., Langer R. and Mikos A. G., “Evolution of bone transplantation:molecular, cellular and tissue strategies to engineer human bone”, Biomaterials, 17, p.175-185, 1996
Yaszemski M. J., Payne R. G., Hayes W. C., Langer R. and Mikos A. G., “In vitro degradation of a poly(propylene fumarate) based composite materials”, Biomaterials, 17, p.2127-2130, 1996
Yang Z., Yuan H., Zou P., Tong W., Qu S. and Zhang X., ”Osteogenic response to extraskeletally implanted synthetic porous calcium phosphate ceramics:an early stage histomorphological study in dogs”, J. Mat. Sci Mat. Med., 8, p.697-701, 1997
Yuan H., Kurashina K., de Bruijn J. D., Li Y., de Groot K. and Zhang X, ”A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics”, Biomaterials, 20, p. 1799-1806, 1999
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top