跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃薰瑩
研究生(外文):Shiun-Ying Huang
論文名稱:熱處理及下電極材料對五氧化二鉭電容器之特性影響
論文名稱(外文):Influences of thermal processes and bottom electrodes on the characteristics of Ta2O5 capacitors
指導教授:陳貞夙陳貞夙引用關係
指導教授(外文):Jen-Sue Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:107
中文關鍵詞:電容器五氧化二鉭
外文關鍵詞:Ta2O5capacitor
相關次數:
  • 被引用被引用:2
  • 點閱點閱:783
  • 評分評分:
  • 下載下載:182
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

本研究將探討熱處理及下電極材料對五氧化二鉭( Ta2O5 )薄膜電容器之特性影響。實驗中分別以多晶矽( poly-Si )、氮化鉭( TaN )、氮化鈦( TiN )及釕( Ru )四組不同材料,作為Ta2O5電容結構之下電極進行研究,並且各組試片皆分別經500℃或700℃氧氣氛退火30分鐘。本實驗大致可分為兩個部分:第一部分為Ta2O5/ 下電極之材料微結構分析;第二部分則為電性量測之探討。最後將材料微結構與電性表現相互比較,在兩者之間尋求其關聯性。
試片製備方面,使用反應式濺鍍法沉積各層薄膜於多晶矽基板上,並使用掃描式電子顯微鏡、低掠角X光繞射儀、歐傑電子能譜儀、原子力顯微鏡、穿透式電子顯微鏡及所附的X光能量散佈光譜儀分析其材料特性。由實驗結果顯示:Ta2O5經500℃退火後可明顯觀察到Ru下電極發生部分氧化,但其他電極則無明顯氧化現象;而700℃退火後,各組電容結構中的Ta2O5介電層,皆因形成β-Ta2O5結晶態而變得較粗糙,poly-Si下電極表面無法明顯觀察到被氧化產生的界面層,TaN及Ru下電極已完全被氧化,且TaN氧化成Ta2O5使體積膨脹了約十倍,TiN下電極則發生部分氧化,但TiN的柱狀結構仍清晰可見。
電性量測方面,以poly-Si為下電極之電容結構雖具有較低的漏電流,卻無法經由氧氣氛退火大幅提高電容值。TaN下電極易與擴散經過Ta2O5的氧氣反應,退火製程造成介電層厚度增大而降低電容值。TiN下電極與Ta2O5之間不易形成界面介電層,因此電容結構經退火後具較高電容值,且經500℃退火後仍維持良好的接面品質,若能改善退火製程使Ta2O5介電層的氧空缺獲得填補,應可進一步降低漏電流。Ru下電極於氧氣氛退火時會氧化成RuO2,並且RuO2與Ta2O5介電層發生相互擴散的現象,造成電容結構之並聯電阻效應極強,因此漏電非常大,已超出可量測範圍。
四組電容結構中,以TiN為下電極材料的Ta2O5薄膜電容,具有較高的發展性。其優點為:抗氧化性優於TaN及Ru、與Ta2O5間的接面品質佳、鍍製於其上的Ta2O5具有較高的電容值等。若改變後處理製程,避免TiN處在高溫氧氣氛的環境中,應可得一高電容值及低漏電流的電容結構。
Abstract

Characteristics of Ta2O5 thin-film capacitors on various bottom electrodes, were investigated in this thesis. The bottom electrodes include poly-Si, TaN, TiN and Ru, and the capacitors were characterized before and after annealing at 500°C or 700°C in oxygen atmosphere for 30min. The experiment contains two parts: one is the microstructural analysis of Ta2O5/bottom electrode multi-layers, and the other is the electrical measurements on the capacitors. Meanwhile, the correlation between the material characteristics and electrical properties is discussed.
In the experiment, poly-Si/n-type Si and poly-Si/SiO2/n-type Si wafers were used as the substrates, for microstructural analysis and for electrical characterization, respectively. All of the films were deposited by reactive sputtering, and the samples were analyzed using scanning electron microscopy( SEM ), glancing incident angle X-ray diffraction spectra( GIA-XRD ), Auger electron spectroscopy( AES ), atomic force microscopy( AFM ) and cross-sectional transmission electron microscopy ( TEM ) with energy dispersive spectroscopy( EDS ). After annealing at 500°C, Ru bottom electrode was partially oxidized, but other bottom electrodes didn’t reveal any indication of oxidation. After annealing at 700°C, the Ta2O5 dielectric film was crystallized and roughed in all of the capacitors. Both TaN and Ru bottom electrodes were completely oxidized, the thickness of oxidized TaN was ten times larger than as-deposited TaN owing to the volume expansion. But TiN bottom electrode was only partially oxidized, and still showed columnar structure.
The capacitor using poly-Si bottom electrode exhibited lower leakage current, but the improvement of capacitance after annealing was minimal. Oxidation of TaN and Ru bottom electrodes after annealing were inevitable, which is harmful for devices in application. The low capacitance of TaN capacitor structure was due to the increase of dielectric thickness via oxidation. Ru bottom electrode oxidized easily to form a conductive phase, RuO2, in the oxygen atmosphere at elevated temperature. Besides, the interdiffusion of Ta2O5 and RuO2 occurred not only at the interface of dielectric layer and bottom electrode, but also in the entire capacitor structure if higher annealing temperature was applied. Ta2O5 dielectric layer on TiN bottom electrode exhibited high capacitance and good interface quality, even after annealing at 500°C. The leakage current of this capacitor can be further improved. TiN bottom electrode is provided with better barrier ability, and is feasible for application after a proper heat treatment.
TiN bottom electrode seems to be a more suitable for Ta2O5 capacitor than poly-Si, TaN or Ru. The advantages of TiN are as follows: better anti-oxidation ability, good interface quality, and large capacitance. Large capacitance and low leakage current can be obtained by using TiN bottom electrode if the post-annealing process is well-controlled.
總目錄
第一章 緒論………………………………………………………….1
1-1 前言…………………………………………………………..1
1-2 研究目的……………………………………………………..5
第二章 理論基礎……………………………………………………7
2-1 介電極化……………………………………………………..7
2-2 介電常數……………………………………………………..8
2-3 導納與阻抗…………………………………………………..9
2-4 電容結構之下電極研究……………………………………12
第三章 實驗方法與步驟…………………………………………15
3-1 試片結構……………………………………………………15
3-2 實驗材料……………………………………………………16
3-3 實驗設備……………………………………………………17
3-3.1 濺鍍系統………………………………………………17
3-3.2 退火系統………………………………………………18
3-3.3 微影系統………………………………………………18
3-4 實驗流程……………………………………………………19
3-4.1 濺鍍TaN薄膜…………………………………………19
3-4.2 濺鍍TiN薄膜…………………………………………19
3-4.3 濺鍍Ru薄膜…………………………………………..19
3-4.4 濺鍍Ta2O5薄膜………………………………………..20
3-4.5 退火步驟………………………………………………20
3-4.6 微影步驟………………………………………………20
3-4.7 濺鍍Al薄膜…………………………………………...20
3-5 鍍層分析……………………………………………………25
3-5.1 膜厚量測………………………………………………25
3-5.2 SEM觀察……………………………………………...25
3-5.3 X-ray結晶結構分析…………………………………..25
3-5.4 AES成份分析…………………………………………26
3-5.5 AFM粗糙度鑑定……………………………………...26
3-5.6 TEM觀察……………………………………………...26
3-5.7 電容-電壓( C-V )量測………………………………...27
3-5.8 電流-電壓( I-V )量測………………………………….27
第四章 實驗結果與討論…………………………………………29
4-1 Ta2O5/下電極之材料微結構分析………………………….29
4-1.1 X-ray繞射分析………………………………………..30
4-1.2 SEM表面型態分析…………………………………...34
4-1.3 AFM表面粗糙度分析………………………………...38
4-1.4 AES縱深成份分析………………………………...….44
4-1.5 TEM橫截面觀察……………………………………...47
4-2 電性量測…………………………………………………....51
4-2.1 介電常數之探討………………………………………51
4-2.2 漏電流性質之探討……………………………………54
4-2.3 接面品質之探討………………………………………60
4-2.4 交流阻抗分析…………………………………………63
4-2.5 電性結果總結…………………………………………84
4-3 理論計算之探討……………………………………………88
第五章 結論……………………………………………………...…90
參考文獻………………………………………………………………91


圖目錄
Fig.1-1 Diagram of a DRAM memory cell………………………………………….1
Fig.1-2 Schematic view of the capacitor structure…………………………………..2
Fig.1-3 DRAM capacitor cell evolution……………………………………………..4
Fig.2-1 Impedance and Conductance Complex Plane of simple RL and RC circuits………………………………………………………………..……11
Fig.3-1 Procedures for material analysis study of Ta2O5 on different bottom electrode…………………………………………………………………...21
Fig.3-2 Procedures for electrical characteristics of Ta2O5 on different bottom electrode…………………………………………………………………...22
Fig.3-3 Ta2O5 annealing procedures………………………………………………..23
Fig.3-4 Procedures of photolithography……………………………………………24
Fig.3-5 Schematic illustration of electrical measurements…………………...……28
Fig.4-1 Glancing incident angle X-ray diffraction spectra of 500°C annealed Ta2O5 films deposited on the different bottom electrodes : (a) poly-Si, (b) TaN, (c) TiN and (d) Ru…………………………………………………………......32
Fig.4-2 Glancing incident angle X-ray diffraction spectra of 700°C annealed Ta2O5 films deposited on the different bottom electrodes : (a) poly-Si, (b) TaN, (c) TiN and (d) Ru………………………………………………………...…...33
Fig.4-3 Scanning electron micrographs on the surfaces of the Ta2O5 films deposited on (a) poly-Si, (b) TaN, (c) TiN and (d) Ru bottom electrodes, before annealing………………………………………………………….……….35
Fig.4-4 Scanning electron micrographs on the surfaces of the Ta2O5 films deposited on (a) poly-Si, (b) TaN, (c) TiN and (d) Ru bottom electrodes, after annealing at 500°C……………………………………………………..….36
Fig.4-5 Scanning electron micrographs on the surfaces of the Ta2O5 films deposited on (a) poly-Si, (b) TaN, (c) TiN and (d) Ru bottom electrodes, after annealing at 700°C…………………………………………………..…….37
Fig.4-6 AFM images on the surfaces of (a) poly-Si bottom electrode, (b) as-dep. Ta2O5/poly-Si bilayer, (c) Ta2O5/poly-Si bilayer after 500°C annealing, and(d) Ta2O5/poly-Si bilayer after 700°C annealing…………………….40
Fig.4-7 AFM images on the surfaces of (a) TaN bottom electrode, (b) as-dep. Ta2O5/TaN bilayer, (c) Ta2O5/TaN bilayer after 500°C annealing, and(d) Ta2O5/TaN bilayer after 700°C annealing……………………………….41
Fig.4-8 AFM images on the surfaces of (a) TiN bottom electrode, (b) as-dep. Ta2O5/TiN bilayer, (c) Ta2O5/TiN bilayer after 500°C annealing, and(d) Ta2O5/TiN bilayer after 700°C annealing………………………………….42
Fig.4-9 AFM images on the surfaces of (a) Ru bottom electrode, (b) as-dep. Ta2O5/Ru bilayer, (c) Ta2O5/Ru bilayer after 500°C annealing, and(d) Ta2O5/Ru bilayer after 700°C annealing………………...…………..…….43
Fig.4-10 AES depth profile of (a) the Ta2O5/poly-Si films and (b) the Ta2O5/TaN/poly-Si films after 700°C annealing…………………………45
Fig.4-11 AES depth profile of the Ta2O5/TiN/poly-Si films after 700°C annealing.46
Fig.4-12 Cross-sectional transmission electron micrograph of Ta2O5/poly-Si/<Si> sample (a) before and (b) after 700°C annealing………………..…….....48
Fig.4-13 Cross-sectional transmission electron micrograph of Ta2O5/ TaN/poly-Si/<Si> sample (a) before and (b) after 700°C annealing……..49
Fig.4-14 Cross-sectional transmission electron micrograph of Ta2O5/ TiN/poly-Si/<Si> sample after 700°C annealing…………….…...……...50
Fig.4-15 Leakage currents of the Ta2O5 capacitors using poly-Si bottom electrode, before and after annealing………………………………………………..56
Fig.4-16 Leakage currents of the Ta2O5 capacitors using TaNbottom electrode, before and after annealing………………………………………………..57
Fig.4-17 Leakage currents of the Ta2O5 capacitors using TiN bottom electrode, before and after annealing………………………………………………..58
Fig.4-18 Leakage currents of the Ta2O5 capacitors using Ru bottom electrode, before and after annealing………………………………………………..59
Fig.4-19 (a) Frequency dependence of the capacitance of Ta2O5 thin films, and (b) the values of m for different capacitor structures………………………...61
Fig.4-20 Complex Impedance Plane for a real capacitor ( Cd//Rd ) in connecting with a series resistance ( Rs )……………………………………………..69
Fig.4-21 Complex Impedance Plane of the Ta2O5/poly-Si capacitors before and after annealing at 500°C or 700°C……………………………………………..72
Fig.4-22 (a) Capacitance of different capacitor structures by impedance fitting or C-V measurement and, (b) Resistance by impedance fitting and the value of m of different capacitor structures…………………………………...73
Fig.4-23 Complex Impedance Plane of the Ta2O5/TaN/poly-Si capacitors before and after annealing at 500°C or 700°C…………………………………..…...75
Fig.4-24 (a) Capacitance of different capacitor structures by impedance fitting or C-V measurement and, (b) Resistance by impedance fitting and the value of m of different capacitor structures…………………………………...76
Fig.4-25 Complex Impedance Plane of the Ta2O5/TiN/poly-Si capacitors before and after annealing at 500°C or 700°C…………………………………..…...78
Fig.4-26 (a) Capacitance of different capacitor structures by impedance fitting or C-V measurement and, (b)Resistance by impedance fitting and the value of m of different capacitor structures…………………………………...79
Fig.4-27 Complex Impedance Plane of the Ta2O5/Ru/poly-Si capacitors before and after annealing at 500°C…………..………………………………..…….82
Fig.4-28 Complex Impedance Plane of the Ta2O5/Ru/poly-Si capacitor after 700°C annealing……………………………………………………………..…..83
Fig.4-29 (a) Capacitance of different capacitor structures by impedance analysis fitting and, (b)capacitance of different capacitor structures by C-V measurement…………………………………………………………….87


表目錄
Table 1-1 Dielectric properties of oxides……………………………………………3
Table 2-1 Investigations of bottom electrodes for Ta2O5 dielectric film in literature
……………………………………………………………………………12
Table 4-1 Root-mean-square roughness of different electrodes and Ta2O5 on
different electrodes before and after annealing………………………..…38
Table 4-2 Capacitance of different capacitor structures……………………………51
Table 4-3 Dielectric constant of Ta2O5 in different capacitor structures…………...52
Table 4-4 The value of m for different capacitor structures………………………..61
Table 4-5 Capacitance and resistance of different capacitors by fitting……………71
Table 4-6 Free energy change of the oxidation of different electrodes at room temperature ( T=298°K )………………………………………………89
Table 4-7 Activation energy and diffusion coefficient of the oxygen diffusion in
different electrodes……………………………………………………...89
參考文獻
[1] S. Ezhilvalavan, Tseung-Yuen Tseng, “Progress in the developments of (Ba, Sr)TiO3 (BST) thin films for Gigabit era DRAMs”, Materials Chemistry and Physics, 65, 227 (2000)

[2] 張義昭, “動態隨機存取記憶體製程技術的趨勢”, 電子月刊, 第二卷, 第九期, 56 (1996)

[3] 黃建華, “五氧化二鉭薄膜電容器之下電極特性研究”, 國立成功大學材料科學及工程學系碩士論文, (民國八十九年)

[4] L. I. Maissel, “Handbook of Thin Films”, 1st ed, (McGraw-Hill, New York, 1970), p.17

[5] J. P. Chang, M. L. Steigerwald, R. M. Fleming, R. L. Opila, and G. B. Alers, “Thermal stability of Ta2O5 in metal-oxide-metal capacitor structures”, Appl. Phys. Lett., 74 (24), 3705 (1999)

[6] S. Ezhilvalavan, Tseung-Yuen Tseng, “Properties and Reliability of Ta2O5 Thin Films Deposited on Ta”, Electronic Components and Technology Conference, 1042 (IEEE 1999)

[7] S. Ezhilvalavan, Tseung-Yuen Tseng, “Electrical properties of Ta2O5 thin films deposited on Ta”, Appl. Phys. Lett., 74 (17), 2477 (1999)

[8] S. Duenas, E. Castan, J. Barbolla, R .R. Kola, P. A. Sullivan, “Tantalum pentoxide obtained from TaNx and TaSi2 anodisation: an inexpensive and thermally stable high k dielectric”, Solid-State Electronics, 45, 1441 (2001)

[9] Won Don Kim, Jin Won Kim, Seok Jun Won, Sang Don Nam, Byeong Yun Nam, Cha Young Yoo, Young Wook Park, Sang In Lee and Moon Yong Lee, “Development of CVD-Ru/ Ta2O5/ CVD-TiN Capacitor for Multigigabit-scale DRAM Generation”, Symposium on VLSI Technology Digest of Technical Papers, 100 (IEEE 2000)

[10] Kee-Won Kwon, Member, IEEE, Chang-Seok Kang, Soon Oh Park, Ho-Kyu Kang, and Sung Tae Ahn, Member, IEEE, “Thermally Robust Ta2O5 Capacitor for the 256-Mbit DRAM”, IEEE Trans. Electron Devices, 43 (6), 919 (1996)

[11] Satoshi Kamiyama, Takanori Saeki, Hidemitu Mori and Youichirou Numasawa, “Highly Reliable 2.5nm Ta2O5 Capacitor Process Technology for 256Mbit DRAMs”, IEDM 91, 827 (1991)

[12] I. Asano, M. Kunitomo, S. Yamamoto, R. Furukawa, Y. Sugawara, T. Uemura, J. Kuroda, M. Kanai, M. Nakata, T. Tamaru, Y. Nakamura, T. Kawagoe, S. Yamada, K. Kawakita, H. Kawamura, M. Nakamura, M. Morino, T. Kisu, S. Iijima, Y. Ohji, T. Sekiguchi and Y. Tadaki, “1.5nm Equivalent Thickness Ta2O5 High-k Dielectric with Rugged Si Suited for Mass Production of High Density DRAMs”, IEDM 98, 755 (1998)

[13] A. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz, “Base electrodes for high dielectric constant oxide materials in silicon technology”, J. Mater. Res., 7 (12), 3260 (1992)

[14] Y. Abe, Y. Kaga, M. Kawamura, and K. Sasaki, “Effects of O2 gas flow ratio and flow rate on the formation of RuO2 thin films by reactive sputtering”, J. Vac. Sci. Technol. B, 18 (3), 1348 (2000)

[15] Li-Jian Meng, M. P. dos Santos, “A study of residual stress on rf reactively sputtered RuO2 thin films”, Thin Solid Films, 375, 29 (2000)

[16] A. Iembo, F. Fuso, and E. Arimondo, “Pulsed laser deposition and characterization of conductive RuO2 thin films”, J. Mater. Res., 12 (6), 1433 (1997)

[17] Takaaki Kawahara, Mikio Yamamuka, Akimasa Yuuki and Kouichi Ono, “(Ba, Sr)TiO3 Films Prepared by Liquid Source Chemical Vapor Deposition on Ru Electrodes”, Jpn. J. Appl. Phys. Part 1, 9B, 35, 4880-4885 (1996)

[18] Kohta Yoshikawa, Takafumi Kimura, Hideyuki Noshiro, Seigen Otani, Masao Yamada and Yuji Furumura, “RuO2 Thin Films as Bottom Electrodes for High Dielectric Constant Materials”, Jpn. J. Appl. Phys. Part 2, 6B, 33, L867-L869 (1994)

[19] Sang Ho Oh, Chan Gyung Park, Chanro Park, “Thermal stability of RuO2/ Ru bilayer thin film in oxygen atmosphere”, Thin Solid Films, 359, 118-123 (2000)

[20] Joon-Hyung Ahn, Won-Jae Lee, Ho-Gi Kim, “Oxygen diffusion through RuO2 bottom electrode of integrated ferroelectric capacitors”, Materials Letters, 38, 250-253 (1999)

[21] Akihiko Tsuzumitani, Yasutoshi Okuno, Jun Shibata, Tadami Shimizu, Kazuhiko Yamamoto and Yoshihiro Mori, “Extendibility of Ta2O5 Metal-Insulator-Metal Capacitor Using Ru Electrode”, Jpn. J. Appl. Phys. Part 1, 4B, 39, 2073-2077 (2000)

[22] Jin-Won Kim, Sang-Don Nam, Seung-Hwan Lee, Seok-Jun Won, Wan-Don Kim, Cha-Young Yoo, Young-Wook Park, Sang-In Lee and Moon-Yong Lee, “Electrical Properties of Crystalline Ta2O5 with Ru Electrode”, Jpn. J. Appl. Phys. Part 1, 4B, 39, 2094-2097 (2000)

[23] A. K. Jonscher, “Dielectric relaxation in solids”, Chelsea Dielectrics Press, London, p.16 (1983)

[24] A. J. Moulson, J. M. Herbert, “Electroceramics: Materials, properties, applications”, CHAPMAN AND HALL

[25] Donald E. Scott, “An Introduction to circuit analysis: a system approach”, McGRAW-HILL International Editions, Electronic Engineering Series.

[26] Seok-Jun Won, Wan-Don Kim, Cha-Young Yoo, Sung-Tae Kim, Young-Wook Park, Joo-Tae Moon, Moon-Yong Lee, “Conformal CVD-Ruthenium Process for MIM Capacitor in Giga-bit DRAMs”.

[27] M. Takeuchi, K. Inoue, M. Sakoh, T. Kitamura, S. Arai, T. Iizuka, T. Yamamoto, H. Shirai, Y. Aoki, M. Hamada, R. Kubota, and S. Kishi, “A 0.15μm Logic based embedded DRAM technology featuring 0.425μm2 Stacked Cell using MIM (Metal-Insulator-Metal) Capacitor”, Symposium on VLSI Technology Digest of Technical Papers, 29 (2001)

[28] S. Kamiyama, H. Suzuki, H. Watanabe, A. Sakai, M. Oshida, T. Tatsumi, T. Tanigawa, N. Kasai, and A. Ishitani, “Ultra-Thin TiN/ Ta2O5/ W Capacitor Technology for 1Gbit DRAM”, IEDM 93, 49 (1993)

[29] R. R. Kola, M. Y. Lau, S. Duenas, H. Y. Kumagai, P. R. Smith, R. C. Frye, K. L. Tai, and P. A. Sullivan, “Thin Films Resistors and Capacitors for Advanced Packaging”, International Symposium on Advanced Packaging Materials, 71 (1997)

[30] Hideaki Matsuhashi and Satoshi Nishikawa, “Optimum Electrode Materials for Ta2O5 Capacitors for High- and Low-Temperature Processes”, Jpn. J. Appl. Phys. Part 1, 3A, 33, 1293-1297 (1994)

[31] S. Ezhilvalavan, Tseung-Yuen Tseng, “Electrical properties of Ta2O5 thin films deposited on Cu”, Thin Solid Films, 360, 268-273 (2000)

[32] H. S. Yang, Y. S. Choi, and S. M. Cho, “Preparation and Properties of Ta2O5 Film Capacitors Using TiSi2 Bottom Electrode”, J. Electronic Materials, 28 (12), 1414 (1999)

[33] Il Kim, John S. Chun, Won-Jong Lee, “Effects of bottom electrodes on dielectric properties of ECR-PECVD Ta2O5 thin film”, Materials Chemistry and Physics, 44, 288-292 (1996)

[34] M. Wittmer, J. Noser, and H. Melchior, “Oxidation kinetics of TiN thin films”, J. Appl. Phys, 52 (11), 6659 (1981)

[35] D. P. Brady, F. N. Fuss, and D. Gerstenberg, “Thermal Oxidation and Resistivity of Tantalum Nitride films”, Thin Solid Films, 66, 287-302 (1980)

[36] I. Suni, D. Sigurd, K. T. Ho, and M-A. Nicolet, “Thermal Oxidation of Reactively Sputtered Titanium Nitride and Hafnium Nitride Films”, J. Electrochem. Soc. : Solid-State Science and Technology, 130 (5), 1210 (1983)

[37] S Ezhilvalavan, Ming Shiahn Tsai and Tseung Yuen Tseng, “Dielectric relaxation and defect analysis of Ta2O5 thin films”, J. Phys. D: Appl. Phys. 33, 1137-1142 (2000)

[38] 賴俊宏, 黃蘭婷, 曾俊元, “高介電氧化鉭薄膜材料的性質探討”, 電子月刊, 第六卷, 第十期, 136 (2000)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top