跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃景暉
研究生(外文):Ching-Hui Huang
論文名稱:鈦鉬合金滑動磨潤性質之研究
指導教授:陳瑾惠朱建平朱建平引用關係
指導教授(外文):Jiin-Huey ChernChien-Ping Ju
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:108
中文關鍵詞:鈦合金磨耗
外文關鍵詞:titanium alloywear
相關次數:
  • 被引用被引用:2
  • 點閱點閱:471
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要

人體於長期荷重及相對運動下,對髖關節磨損情況會隨著年齡的增加而日益嚴重,當髖臼關節的損耗程度已經導致髖部疼痛、不良於行,或因關節性的病變(如osteoarthritis或osteonecrosis),導致髖關節無法正常運作,此時便需考慮人工髖關節的置換。在人工髖關節組件應用上,對於需承受高應力之骨骼,多選用金屬材料予以取代。需要能吸收衝擊、減少相對位移的軟骨組織,則以高分子聚合物替代。
本研究主要是針對本實驗室所研發低彈性模數的鈦合金(Ti-7.5Mo)及高強度鈦合金(Ti-7.5Mo-2Fe)與UHMWPE的磨耗性質作定性的研究與探討,並與Ti-13Nb-13Zr及商業用Ti-6Al-4V的磨耗性質相比較,期望能發展出除了保有鈦合金的基本優點外,耐磨性更佳並且安全不含毒性元素的新合金。
乾式與濕式磨耗實驗結果顯示:磨耗後Ti-13Nb-13Zr磨耗面的磨損最為嚴重,耐磨性最差。在乾式磨耗實驗中,愈容易在磨耗面產生PE轉移層的合金,其磨耗後表面的粗糙度會愈大,而對磨的PE磨耗量也會愈大。濕式磨耗實驗比乾式磨耗實驗更接近於人體髖關節環境的模擬,其結果顯示在濕式環境的模耗行為與合金的硬度有關係。硬度較小的Ti-13Nb-13Zr和Ti-7.5Mo所產生的PE磨耗量較大;而硬度較大的Ti-6Al-4V和Ti-7.5Mo-2Fe產生的PE磨耗量較小。所以單從磨耗行為來看,硬度較大的Ti-7.5Mo-2Fe及Ti-6Al-4V會較適合作為髖關節的植入材。
總目錄

摘要……………………………………………………. 3
總目錄…………………………………………………. 4
圖目錄…………………………………………………. 7
表目錄…………………………………………………. 10


第一章 前言……………………………………………………. 11

1-1 研究背景………………………………………………. 11
1-2 研究目的………………………………………………. 13

第二章 理論基礎………………………………………………. 14

2-1 植入物材料的基本要件………………………………. 14
2-2 生醫材料分類…………………………………………. 14
2-2-1 金屬類…………………………………………………. 15
2-2-2 陶瓷類…………………………………………………. 16
2-2-3 高分子類………………………………………………. 17
2-2-4 複合材料………………………………………………. 17
2-3 鈦合金簡介……………………………………………. 19
2-3-1 鈦的基本性質…………………………………………. 19
2-3-2 鈦合金的分類…………………………………………. 19
2-3-3 Ti-Mo合金的基本介紹……………………………….. 21
2-4 人工髖關節之鬆脫機制………………………………. 23
2-4-1 應力遮蔽效應…………………………………………. 23
2-4-2 骨溶解效應……………………………………………. 24
2-5 人工髖關節之負載……………………………………. 25
2-6 磨耗機制………………………………………………. 25
2-6-1 磨耗之形式……………………………………………. 27
2-6-2 潤滑條件之影響………………………………………. 28
2-7 磨耗殘屑引起之生理機制……………………………. 30

第三章 材料與方法……………………………………………. 33

3-1 實驗流程………………………………………………. 33
3-2 試片製備………………………………………………. 33
3-2-1 純鈦及Ti-6Al-4V……………………………………... 33
3-2-2 鈦鉬合金及Ti-13Nb-13Zr……………………………. 33
3-2-3 超高分子量聚乙稀……………………………………. 36
3-2-4 金屬試片熔煉及鑄造…………………………………. 36
3-2-5 試片機械加工成形……………………………………. 41
3-3 磨耗試驗………………………………………………. 43
3-3-1 磨耗機簡介……………………………………………. 43
3-3-2 實驗條件………………………………………………. 46
3-3-3 實驗步驟………………………………………………. 46
3-4 顯微結構分析…………………………………………. 48
3-4-1 光學顯微鏡……………………………………………. 48
3-4-2 掃瞄式電子顯微鏡……………………………………. 48
3-5 機械性質分析…………………………………………. 50
3-5-1 表面粗糙度分析………………………………………. 50
3-5-2 微硬度分析……………………………………………. 50
3-6 化學性質分析…………………………………………. 51
3-6-1 電子能譜化學分析……………………………………. 51

第四章 結果與討論……………………………………………. 52

4-1 乾式磨耗實驗結果與討論……………………………. 52
4-1-1 磨耗量與摩擦係數……………………………………. 52
4-1-2 磨耗面觀察……………………………………………. 52
4-1-3 磨耗面粗糙度量測……………………………………. 60
4-1-4 磨耗後金屬硬度值量測………………………………. 62
4-1-5 磨屑型態觀察與分析…………………………………. 66
4-1-6 乾式磨耗實驗討論……………………………………. 66
4-2 濕式磨耗實驗結果與討論……………………………. 71
4-2-1 磨耗量與摩擦係數……………………………………. 71
4-2-2 磨耗面觀察……………………………………………. 75
4-2-3 磨耗面粗糙度量測……………………………………. 86
4-2-4 磨耗後金屬硬度值量測………………………………. 86
4-2-5 磨屑型態觀察與分析…………………………………. 89
4-2-6 濕式磨耗實驗討論……………………………………. 94
4-3 乾式與濕式磨耗實驗結果比較………………………. 96

第五章 結論……………………………………………………. 98

第六章 參考文獻………………………………………………. 99




圖目錄

圖2-2-1 人工植入物複合材料;(a)多孔性HA鍍層(b)碳纖維強化環氧化物骨板……… 18
圖2-3-1 Ti-Mo二元合金平衡相圖……………………………22
圖2-6-1 磨耗機制分類;(a)Adhesive (b)Abrasion (c)Transfer (d)Fatigue (e)Third-body wear………………………… 29
圖2-7-1 殘屑引起骨再吸收作用之免疫機制…………………. 32
圖3-1-1 實驗流程圖……………………………………………. 34
圖3-1-2 (a)金屬磨耗材與 (b)UHMWPE對磨材……………… 35
圖3-2-1 石墨鑄模規格…………………………………………. 37
圖3-2-2 試片規格………………………………………………. 38
圖3-2-3 CASTMATIC鑄造機示意圖………………………….. 39
圖3-2-4 合金熔煉鑄造過程;(1)鎢電極 (2)鑄錠 (3)銅坩鍋 (4)石墨模…………………………………………… 40
圖3-2-5 金屬鑄件……………………………………………… 42
圖3-3-1 磨耗機簡圖……………………………………………. 44
圖3-3-2 模擬磨耗液抽氣過濾裝置……………………………. 49
圖3-5-1 Ra所代表的意義………………………………………. 50
圖4-1-1 乾式磨耗實驗PE的平均磨耗量比較圖……………… 53
圖4-1-2 乾式磨耗實驗各種合金/UHMWPE之摩擦曲線圖….. 54
圖4-1-3 乾式磨耗實驗摩擦係數比較圖………………………. 55
圖4-1-4 乾式磨耗後金屬表面形成的PE轉移層……………... 57
圖4-1-5 乾式磨耗實驗與金屬對磨之PE磨耗面……………… 58
圖4-1-6 乾式磨耗實驗中合金表面隨時間形成的轉移層……. 59
圖4-1-7 乾式磨耗實驗後鈦合金磨耗表面粗糙度比較圖…….. 61
圖4-1-8 乾式磨耗後各合金表面清洗後之粗糙度比較圖…….. 63
圖4-1-9 各合金的硬度比較圖………………………………….. 64
圖4-1-10 乾式磨耗後各合金磨耗表面硬度值………………….. 65
圖4-1-11 乾式磨耗Ti-7.5Mo-2Fe對磨UHMWPE產生的磨屑SEM圖……67
圖4-1-12 乾式磨耗Ti-7.5Mo對磨UHMWPE產生的磨屑SEM圖…………. 68
圖4-1-13 乾式磨耗Ti-6Al-4V對磨UHMWPE產生的磨屑SEM圖……. 69
圖4-1-14 乾式磨耗Ti-13Nb-13Zr對磨UHMWPE產生的磨屑SEM圖…… 70
圖4-2-1 濕式磨耗實驗PE的平均磨耗量比較圖……………… 72
圖4-2-2 濕式磨耗實驗各種合金/UHMWPE之摩擦曲線圖….. 73
圖4-2-3 濕式磨耗實驗摩擦係數比較圖……………………….. 74
圖4-2-4 濕式磨耗後金屬表面形成的覆蓋層………………….. 76
圖4-2-5 濕式磨耗實驗與金屬對磨之PE磨耗面……………… 77
圖4-2-6 濕式磨耗後經過清洗的金屬表面…………………….. 78
圖4-2-7 Ti-7.5Mo-2Fe濕式磨耗後表面覆蓋層XPS定性分析.. 80
圖4-2-8 Ti-7.5Mo濕式磨耗後表面覆蓋層XPS定性分析……. 81
圖4-2-9 Ti-6Al-4V濕式磨耗後表面覆蓋層XPS定性分析…… 82
圖4-2-10 Ti-13Nb-13Zr濕式磨耗後表面覆蓋層XPS定性分析.. 83
圖4-2-11 濕式磨耗實驗中合金表面隨時間形成的覆蓋層…….. 85
圖4-2-12 濕式磨耗後各合金的表面粗糙度比較圖…………….. 87
圖4-2-13 濕式磨耗後各合金磨耗表面硬度值………………….. 88
圖4-2-14 濕式磨耗Ti-7.5Mo對磨UHMWPE產生的磨屑SEM圖………… 90
圖4-2-15 濕式磨耗Ti-13Nb-13Zr對磨UHMWPE產生的磨屑SEM圖…… 91
圖4-2-16 濕式磨耗Ti-7.5Mo-2Fe對磨UHMWPE產生的磨屑SEM圖……92
圖4-2-17 乾式磨耗Ti-6Al-4V對磨UHMWPE產生的磨屑SEM圖………. 93


表目錄

表2-3-1 鈦與其它材料的物理性質比較………………………. 20
表2-5-1 人工髖關節在不同活動度下之負荷…………………. 26
表3-3-1 ASTM標準磨耗測試條件……………………………. 45
表3-3-2 本實驗之磨耗條件……………………………………. 47
表4-2-1 濕式磨耗後合金表面轉移層XPS半定量分析……… 79
表4-2-2 合金與UHMWPE對磨所產生磨屑之EDS分析……. 95
[1]韋文誠、鄭誠功、關永武,陶瓷人工髖關節球頭之發展與評估,科學發展月刊,第二十七卷,第九期,pp.998-1007.
[2]J.A. Davidson, A.K. Mishra, P. Kovacs and R.A. Poggie, “New surface hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty”, Bio-Medical Materials and Engineering, 4(3): 231-243, 1994.
[3]W.F. Ho, “Structure and properties of cast Ti-Mo alloys”, Dissertation for Philosophy, Department of Materials Science and Engineering National Cheng-Kung University, Tainan, Taiwan, R.O.C., 1999.
[4]Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, “Cytocompatibility of various metal and development of new titanium alloys for medical implants”, Materials Science and Engineering, A243: 250-256, 1998.
[5]S. Rao, T. Ushida, T. Tateishi, Y. Okazaki and S. Asao, “Effect of Ti, Al and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells”, Bio-Medical Materials and Engineering, 6: 79-86, 1996.
[6]A.K. Mishra, J.A. Davidson, R.A. Poggie, P. Kovacs and T.J. Fitzgerald, “Mechanical and tribological properties and biocompatibility of diffusion hardened Ti13Nb13Zr- a new titanium alloy for surgical implants”, edited by S.A. Brown and J.E. Lemons, Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM STP 1272, West Conshohocken, PA: ASTM, pp. 96-113, 1996.
[7]L.D. Zardiackas, D.W. Mitchell and J.A. Disegi, “Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications”, edited by S.A. Brown and J.E. Lemons, Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM STP 1272, West Conshohocken, PA: ASTM, pp. 60-75, 1996.
[8]R.M. Pilliar, “Modern metal processing for improved load-bearing surgical implants”, Biomaterials, 12: 95-100, 1991.
[9]J.O. Galante, J. Lemons, M. Spector and P.D. Wilson, “The biologic effects of implant materials”, Journal of Orthopaedic Research, 9: 760-775, 1991.
[10]J. Livermore, “Effect of femoral head size on wear of the polyethylene acetabular component”, The Journal of Bone and Joint Surgery, vol. 72-A, No. 4, April, 1990.
[11]V. Premnath, W.H. Harris, M. Jasty and E.W. Merrill, “Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem”, Biomaterial, 17: 1741-1753, 1996.
[12]B.A. Mckellop and T.V. Röstlund, “The wear behavior of ion-implanted Ti-6Al-4V against UHMWPE”, Journal of Biomedical Materials Research, 24: 1413-1425, 1990.
[13]F. Torregrosa, L. Barrallier and L. Roux, “Phase analysis, microhardness and tribological behavior of Ti-6Al-4V after ion implantation of nitrogen in connection with its application for hip-joint prosthesis”, Thin Solid Films, 266: 245-253, 1995.
[14]F. Alonso, T.J. Ugarte, D. Sansom, J.L. Viviente and J.I. Onate, “Effects of ion implantation on Ti-6Al-4V on its frictional behavior against UHMWPE”, Surface and Coatings Technology, 83: 301-306, 1996.
[15]傅宇輝“骨科原理及應用” 國立編譯館,第一版,第二十七章,1989.
[16]J.B. Park, “Biomaterials science and engineering”, Introduction ,Chap.1, Plenum press, pp. 1, 1984.
[17]J.B. Park, “Biomaterials science and engineering”, Introduction, Chap.1, Plenum press, pp. 4, 1984.
[18]A. Montague, K. Merritt, S. Brown, and J. Payer, “Effects of Ca and H2O2 added to Rpmi on the fretting corrosion of Ti6Al4V”, Journal of Biomedical Materials Research, 32: 519-526, 1996.
[19]J.A. Davidson, “Characteristics of metal and ceramic total hip bearing surface and the effect on long-term UHMWPE wear”, Orthopaedic Research Report OR-92-08, Smith and Nephew, 1991.
[20]S.S. Seymour, “Plastics materials and processes”, Van Nostrand Reinhold, New York, pp. 74-77, 1982.
[21]S.R. Simon, “Orthopaedic basic science”, American Academy of Orthopaedic Surgeons, pp. 474, 1994.
[22]S.L. Evans and P.J. Gregson, “Composite technology in load-bearing orthopaedic implants”, Biomaterials, 19: 1329-1342, 1998.
[23]Y. Fu and A.W. Batchelor, “Fretting wear behavior of thermal sprayed hydroxyapatite coating lubricated with bovine albumin”, Wear, 230: 98-102, 1999.
[24]M. Rψkkum, M. Brandt, K. Bye, K.R. Hetland, S. Waage and A. Reigstad, “Polyethylene wear, osteolysis and acetabular loosening with an HA-coated hip prosthesis”, The Journal of Bone and Joint Surgery, 81B: 582-589, 1999.
[25]D.P. Dowling, P.V. Kola and K. Donnelly, “Evaluation of diamond-like carbon-coated orthopaedic implants”, 6: 390-393, 1997.
[26]M.T. Raimondi and R. Pietrabissa, “The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating”, Biomaterials, 21: 907-913, 2000.
[27]J. Matthew and Jr. Donachie, “Titanium a technical guide”, ASM International, Metals Park, OH 44073, USA, 1988.
[28]J.L. Murray, “Binary alloy phase diagrams”, Vol. 3, edited by massalski TB, J.L. Murray, L.H. Bennett and H. Baker, American Society for Metals, Park, Ohio: ASM, pp. 1637-1641, 1986.
[29]P.J. Bania, “Beta titanium alloys and their role in the titanium industry”, edited by D. Eylon, R. Boyer and D. Koss, Beta Titanium Alloys in the 1990’s, TMS, Warrendale, PA, pp. 3-14, 1993.
[30]R.M. Hall and A. Unsworth, “Review-Friction in hip prostheses”, Biomaterials, 18: 1017-1026, 1997.
[31]R.J.A. Bigsby, D.D. Auger, Z.M. Jin, D. Dowson, C.S. Hardaker and J. Fisher, “A comparative tribological study of wear of composite cushion cups in a physiological hip joint simulator”, Journal of Biomechanics, 31: 363-369, 1998.
[32]S.J. Hall, “Basic Biomechanics”, The McGraw-Hill Companies, Inc., Chap. 4, 1995.
[33]W.H. Harris, “Osteolysis and particle disease in hip replacement-A review”, Acta orthopaedica Scandinavica, 65: 113-123, 1994.
[34]S. Santavirta, “Biocompatibility of polyethylene and host response to loosening of cementless total hip replacement”, Clinical Orthopaedics and Related research, 297: 100-110, 1993.
[35]H.A. McKellop, P. Campbell and S.H. Park, “The origin of submicron polyethylene wear debris in total hip arthroplasty”, Clinical Orthopaedics and Related Research, 311: 3-20, 1995.
[36]H.G. Willert and H. Bertram, “Osteolysis in alloarthroplasty of the hip-The role of ultra-high molecular weight polyethylene wear particles”, Clinical Orthopaedics and Related Research, No. 258, Sep, 1990.
[37]M.T. Manley and P. Serekian, “Wear debris-An environmental issue in total joint replacement”, Clinical Orthopaedics and Related Research, 298: 137-146, 1994.
[38]M.J. Griffith, M.K. Seidenstein, D. Williams and J. Charnley, “Eight year results of Charnley arthroplasties of the hip with special reference to the behavior of cement”, Clinical Orthopaedics and Related Research, 137: 24-36, 1978.
[39]J.K. Weaver, “Activity expectations and limitations following total joint replacement”, Clinical Orthopaedics and Related Research, 137: 55-61, 1978.
[40]C.H. Lohmann and Z. Schwartz, ”Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition”, 21: 551-561, 2000.
[41]M. Baleani, L. Cristofolini and M. Viceconti, “Endurance testing of hip prostheses: a comparison between the load fixed in ISO 7206 standard and the physiological loads”, Clinical Biomechanics, 14: 339-345, 1999.
[42]S.R. Simon, “Orthopaedic basic science”, American Academy of Orthopaedic Surgeons, pp.466-467, 1994.
[43]J.E. Nevelos, E. Ingham, C. Doyle, J. Fisher and A.B. Nevelos, “Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses”, Biomaterials, 20: 1833-1840, 1999.
[44]S.R. Simon, “Orthopaedic basic science”, American Academy of Orthopaedic Surgeons, pp. 464-466, 1994.
[45]A. Wang, A. Essner, C. Stark and J.H. Dumbleton, “Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions”, Biomaterials, Vol. 17, No. 9, 1996.
[46]V.D. Good, I.C. Clarke and L. Anissian, “Water and bovine serum lubrication compared in simulator PTFE/CoCr wear model”, Journal of Biomedical Materials Research, 33: 275-283, 1996.
[47]J.P. Van Loon, G.J. Verkerke, L.G. M. de Bont and R.S.B. Liem, “Wear-testing of a temporomandibular joint prosthesis: UHMWPE and PTFE against a metal ball, in water and in serum”, Biomaterials, 20: 1471-1478, 1999.
[48]V. Chanddrasekaran, W.L. Sauer, A.M. Tayor and D.W. Hoeppner, “Evaluation of fretting corrosion behavior of the proximal pad taper of a modular hip design”, Wear, 231: 54-64, 1999.
[49]M.J. Paooas, G. Makris and F.F. Buechel, “Titanium nitride ceramic film against polyethylene”, Clinical Orthopaedics and Related Research, 317: 64-70, 1995.
[50]V.O. Saikko, P.O. Paavolainen and P. Slatis, “Wear of the polyethylene acetabular cup-Metallic and ceramic heads compared in a hip simulator”, Acta Orthopaedica Scandinavica, 64: 391-402, 1993.
[51]F. Brossa, A. Cigada, S. Fare, R. Chiesa and L. Paracchini, “Tribological behavior of Ti-6Al-4V modified by surface treatments”, Journal of Materials Science: Material in Medicine, 7: 471-474, 1996.
[52]B. Derbyshire, J. Fisher, D. Dowson, C.S. Hardaker and K. Brummitt, “Wear of UHMWPE sliding against untreated, titanium nitride-coated and ‘Hardcor’-treated stainless steel counterfaces”, Wear, pp. 258-262, 1995.
[53]R.A. Poggie, J.J. Wert, A.K. Mishra and J.A. Davidson, “Friction and wear characterization of UHMWPE in reciprocating sliding contact with Co-Cr, Ti-6Al-4V, and zirconia implant bearing surfaces”, Wear and Friction of Elastomers, ASTM STP 1145, Robert Denton and M.K. Keshavan, Eds., American Society for Testing and Materials, Philadelphia, 1992.
[54]R.A. Buchanan, E.D. Rigney and J.M. Williams, “Wear accelerated corrosion of Ti-6Al-4V and nitrogen ion implanted Ti-6Al-4V mechanisms and influence of fixed stress magnitude”, Journal of Biomedical Materials Research, 21: 367-377, 1987.
[55]H. Hong and W.O. Winer, “A fundamental tribological study of Ti/Al2O3 contact in sliding wear”, Journal of Tribology, 111: 504-509, 1989.
[56]V. Saikko, “Wear and friction properties of prosthetic joint materials evaluated on a reciprocating pin-on-flat apparatus”, Wear, 166:169-178, 1993.
[57]C. Allen, A. Bloycet and T. Bellt, “Sliding wear behavior of ion implanted ultra high molecular weight polyethylene against a surface modified titanium alloy Ti-6Al-4V”, Tribology International, 29(6): 527-534, 1996.
[58]H. Schmidt, A. Schminke and D.M. Rück, “Tribological behavior of ion-implanted Ti6Al4V sliding against polymers”, Wear, 209: 49-56, 1997.
[59]F. Platon, P. Fournier and S. Rouxel, “Tribological behavior of DLC coatings compared to different materials used in hip joint prostheses”, Wear, 250: 227-236, 2001.
[60]X.Y. Li, H. Dong and W. Shi, “New insight into wear Ti6Al4V by ultra-high molecular weight polyethylene under water lubricated conditions”, Wear, 250: 553-560, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top