跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林世彬
研究生(外文):Shih-Pin Lin
論文名稱:鋰離子二次電池陰極材料LiNiO2之合成及其性質
論文名稱(外文):Synthesis and Properties of LiNiO2 Cathodic Materials for Lithium-Ion Battery
指導教授:洪敏雄洪敏雄引用關係方冠榮
指導教授(外文):Min-Hsiung Honuan-Zong Fung
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:140
中文關鍵詞:動力學鋰鎳氧合成陰極鋰電池
外文關鍵詞:lithium nickel oxidelithium battery
相關次數:
  • 被引用被引用:12
  • 點閱點閱:1423
  • 評分評分:
  • 下載下載:326
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
LiNiO2是常用鋰離子二次電池陰極材料之一,較商業之LiCoO2具更價廉、高電容量(capacity)、高電解質穩定性;但其合成困難,不易達到計量比成分,造成第一次充放電時,比電容量衰減太大。
LiNiO2具良好結晶性、粒徑小且分佈範圍窄時,可得更高電極活性,故本研究中利用檸檬酸凝膠法研製LiNiO2。此法中金屬離子於溶液中可得到原子級分散,並可於較低溫下合成均勻、結晶性良好且粒徑小之粉末。
由於前人只針對不同合成條件對後續電化學影響加以研究,對於反應過程中有機物-金屬離子鍵結及有機物熱分解機構探討仍付之闕如。故本研究針對此不足處做進一步探討。除利用檸檬酸凝膠法(又稱Pechini method)成功合成具較佳計量比成分之Li0.99Ni1.01O2外,並探討先驅物中有機物與金屬離子間之鏈結,以及不同氣氛(空氣、氧氣)下之煆燒及分解機構,最後組裝成電池,測其比電容量及循環性。研究並輔以DTA-TG, XRD, FTIR, XPS, SEM, TEM,充放電(charge-discharge)等測試方法。

在分解機構方面,鋰鎳檸檬酸膠體先驅物合成後,藉由FTIR量測,發現常溫下檸檬酸根之COO-以單鍵方式(unidentate)螯合金屬離子(Li+, Ni2+),形成COOM(M=Li, Ni)並與乙二醇之OH行酯化反應,烘乾後形成一金屬離子均勻分佈之立體有機網狀物。有機先驅物於氧氣下加熱至300℃,COO-與金屬離子間鍵結逐漸由單鍵轉變成架橋,此時FTIR圖譜除COO-外,尚有碳酸根( )。當溫度高於400℃, COO-及OH-消失,而 仍殘留。
在不同氣氛下(空氣、氧氣),鋰鎳檸檬酸膠反應機構及相變化有很大之差異:不論在氧氣及空氣中煆燒至300-350℃均有很強的放熱峰,此為有機膠體自身燃燒所釋放出之熱能,此導致非晶質的膠體結晶分別生成Li2CO3、NiO(空氣下);Li2CO3、NiO、Ni2O3(氧氣下),但當溫度升至600℃,只有於空氣氣氛下煆燒出現一強放熱峰,此因空氣下燃燒不完全,殘碳延至600℃才完全燃燒去除所致;而有機物於氧氣煆燒下燃燒較完全,已於350℃去除大部分有機物,故未觀察到放熱峰。

合成機構方面,有機膠體於空氣氣氛煆燒下,於300℃分解成Li2CO3及NiO,隨溫度升高至700℃,生成層狀LixNi2-xO2,此現象可由下式表示之:
Citrate complex→Li2CO3+NiO
Li2CO3+(2-x)NiO+ O2→LixNi2-xO2 + CO2 (0<x≤1)
另一方面,有機膠體於氧氣下在300℃煆燒,分解成Li2CO3、NiO及Ni2O3,由DTA/TG分析,發現Ni2O3生成原因為有機物於氧氣中劇烈燃燒放熱,促使+3價鎳氧化物於300℃生成。另外,在反應機制方面:經XRD分析Ni2O3穩定性不佳,於高溫下會分解成NiO(即使在富氧環境下);另外,以Ni2O3及NiO兩者分別為起始原料合成LixNi2-xO2,反應速率相同,更可證實Ni2O3先分解為NiO。故鋰鎳膠體於氧氣下煆燒依下式反應:
Citrate complex→Li2CO3+NiO +Ni2O3
Ni2O3 → 2NiO+ O2
Li2CO3 + (2-x)NiO+ O2 → LixNi2-xO2 + CO2 (0<x≦1)

在LixNi2-xO2成分計量比及其對電化學性質影響方面,空氣及氧氣下煆燒分別可得Li0.91Ni1.09O2 及Li0.99Ni1.01O2。由此可知,氧可促進Li進入NiO晶格,增加計量比鋰鎳生成。此現象可由下式表示之:

值得注意的是LixNi2-xO2於空氣下煆燒,隨溫度升高至800℃,會有Li損失,造成缺鋰化合物,影響後續之電化學性質。鋰鎳氧化物於氧氣下之I(003)/I(104)比值為1.43,較空氣下之1.2高,由此可知,氧氣下所煆燒之鋰鎳氧化物具較完美之結構;其第一次放電可達172mAh/g ,遠較於空氣下煆燒者(80mAh/g)更具較佳之充放電容量。

本研究也針對Li2CO3與NiO之間反應機構做深入探討,於650℃、700℃、750℃三溫度下恆溫0-12小時,藉由XRD計算不同時間下之LixNi2-xO2生成量(%),藉此推算出反應動力機構,結果顯示LixNi2-xO2生成反應為擴散控制,其反應可由Jander model [1-(1-α)1/3]2=kt 表示之。其反應活化能為190 kJ/mol,經分析討論,LixNi2-xO2之合成可分為兩個步驟:首先 Ni (II) 氧化成Ni(III) 並且形成陽離子空缺,最後鋰離子進入陽離子空缺中。其中反應決定步驟為鎳空缺之生成,可表示如下式:
添加劑效應方面,當25%Al加入Li2CO3與NiO中反應,可有效降低活化能至83kJ/mol,此乃因生成α-LiAlO2並作為LiNiO2晶種,加速反應進行。
Abstract
LiNiO2 has received a great deal of interest as lithium insertion cathodes for Li rechargeable batteries, and provides the advantage over Co-containing system of being inexpensive and higher capacity. But it suffers from the difficulty in stoichiometric powder synthesis and unacceptable capacity fade for the first charge-discharge cycle. Most of the related researches have focused on the relationship between electrochemistry and synthesis condition of LiNiO2, but bonding between organics and metal ions was seldom discussed. The objective of this work was to investigate the crystallization mechanism of LiNiO2 synthesized by Pechini method from the chemical bonding between metal ion (Li+, Ni2+) and organic acid to the crystal transition metal oxide. To identify the reaction between Li+, Ni2+ ions and citric acid-EG complex, the FTIR analyses were used. The structure analyses were conducted using DTA, XPS and XRD. Characterization of FTIR spectroscopy indicates that the bonding for Li-Ni citrate between cations and dissociated carboxlate is chelated with unidentate coordination. During decomposition for the temperature raising to 300℃, the bonding between cations and carboxlate from unidentate changed to bridging complex and carbonate species as observed. All bonds corresponding to carboxlate and OH disappear, and only carbonate was observed as temperature above 400℃.
The effect of calcined atmosphere on formation mechanism of LiNiO2 is significant. An exothermic peak was observed when citric acid was heated up to 600℃ in air. This exothermic peak can be ascribed to the decomposition of residual organics. When pure oxygen was employed, the decomposition of organic precursors was enhanced at 350℃. Thus, at 600℃, neither thermochemical reaction nor weight loss has occurred.
The synthesis of LiNiO2 in air was described as the decomposition of citrate into Li2CO3 and NiO, which subsequently formed LixNi2-xO2 at temperatures higher than 500℃ in air. The reactions may be described by the following reactions:
Citrate complex→Li2CO3+NiO
Li2CO3+(2-x)NiO+ O2→LixNi2-xO2 + CO2 (0<x≤1)

When Li-Ni gel was calcined in O2, the Li2CO3, NiO and Ni2O3 were observed at 300℃
Compared with the result of solid state reaction using NiO and Li2CO3 as reactants, Ni2O3 was the new compound found in Pechini-processed powder. It was found that Ni2O3 was obtained from nickel citrate and nickel acetate which released a large amount of heat during calcination. Based on the thermodynamic calculation, Ni2O3 is not a stable compound in the oxidizing environment. As a result, Ni2O3 decomposes into NiO, which reacts with Li2CO3 to form LiNiO2 at 700℃.
An isothermal kinetics study was performed on the mixture of NiO, Ni2O3 and Li2CO3 at 700℃. The result indicates that the decomposition of Ni2O3 into NiO takes place at the beginning hour of the isothermal reaction. Consequently, NiO and Li2CO3 are consumed due to the formation of LiNiO2. Based on the results obtained, the reactions for Pechini-processed LiNiO2 may be described by the following reactions:
Citrate complex→Li2CO3+NiO+Ni2O3
Ni2O3 → 2NiO+ O2
Li2CO3 + (2-x)NiO+ O2 → LixNi2-xO2 + CO2 (0<x≦1)

Structural analysis shows that the crystallization of LixNi2-xO2 is significantly enhanced by the presence of oxygen at lower temperatures. Li0.99Ni1.01O2 and Li0.91Ni1.09O2 were obtained in O2 and air atmosphere, respectively. The I(003)/I(104) ratio of LixNi2-xO2 formed is higher in pure oxygen (1.43) than that in air (1.2). Thus, it is expected that LixN2-xO2 synthesized in O2 atmosphere exhibits better electrochemical properties than that synthesized in air.
Kinetics and mechanism of the LixNi2-xO2 (0<x≦1) reacted from Li2CO3 and NiO were investigated by XRD, SEM in this study. The formation of LixNi2-xO2 was found to be a thermally-activated process, which can be represented as the Jander model [1-(1-α)1/3]2=kt and the reaction activation energy is estimated to be about 190 kJ/mol. The formation of LixNi2-xO2 can be viewed as the combination of two reactions: The oxidation of nickel (II) to nickel (III) accompanied by the creation of cation vacancies and followed by the filling of lithium ions into the cation vacancies created. Based on the result of kinetics study in this work, the rate-determining step is considered to be the creation of nickel vacancies and can be described as
With the addition of 25% of Al ion, the activation energy for the formation of LiNiO2 drastically decreased from 190 kJ/mole (undoped reaction) to 83 kJ/mole. The enhancement of LiNiO2 formation by Al doping is attributed to the structure resemblance between α-LiAlO2 and LiNiO2. The α-LiAlO2 acts as the seeding material which provides nucleation sites for the growth of LiNiO2.
總目錄
中文摘要 Ⅰ
英文摘要 Ⅳ
總目錄 Ⅶ
圖目錄 XI
表目錄 XVII
英漢名詞對照表 XVIII

第一章 緒論 1
1-1 前言 1
1-2 研究動機 2

第二章 理論基礎與文獻回顧 4
2-1 二次鋰離子電池原理 4
2-2 二次鋰離子陰極材料 7
2-3化學溶液法合成陶瓷粉末 16
2-3-1化學共沈法 16
2-3-2檸檬酸鹽合成法 17
2-3-2-1檸檬酸錯化合物法反應機構 17
2-3-2-2 檸檬酸凝膠法 17
2-4傅立葉轉換紅外線光譜基本原理 18
2-5 結晶成長動力 19
2-5-1 Johnson-Mehl-Avrami方程式 19
2-5-2 Avrami常數與反應速率步驟 23

第三章 實驗方法與步驟 25
3-1 化學藥品選用 25
3-2 鋰鎳有機膠體配製 25
3-3 鋰鎳氧化物煆燒 25
3-4 鋰鎳氧化物分析 25
3-4-1 熱重/熱差分析(TG/DTA)和示差掃瞄熱量測定(DSC) 25
3-4-2 霍式轉換紅外線光譜分析(FT-IR) 25
3-4-3 X-ray 繞射分析 27
3-4-4 感應耦合電漿原子放射光譜分析(ICP-AES) 27
3-4-5 鎳價數XPS分析 27
3-4-6 鎳價數滴定分析 27
3-4-7 掃瞄式電子顯微分析 29
3-4-8 穿透式電子顯微鏡 29
3-4-9 比表面積分析 29
3-5 電池組裝 29
3-5-1 陰極極片製作 29
3-5-2 陽極極片製作 29
3-5-3 電解質及隔離膜 31
3-5-4 電池組裝 31
3-6充放電測試 31

第四章 鋰鎳檸檬酸凝膠於氧氣氛下煆燒研究
4-1 鋰鎳檸檬酸凝膠結構及鍵結 32
4-1-1 檸檬酸-乙二醇酯化反應 32
4-1-2檸檬酸-乙二醇膠體與金屬離子鍵結 34
4-2 有機先驅物於氧氣氛煆燒之熱分解及相變分析 37
4-2-1檸檬酸、乙二醇及檸檬酸-乙二醇膠體熱分解 37
4-2-2 鋰膠、鎳膠熱分解及相變化分析 40
4-2-3 鋰-鎳有機膠體熱分解及相變化分析 40
4-2-3-1 煆燒過程中鋰鎳有機膠體鍵結及結構分析 40
4-3鋰-鎳有機膠體相變化分析 44
4-3-1 鋰鎳有機膠體煆燒過程中化學成分及鎳價數分析 48
4-4 Li0.99Ni1.01O2TEM觀察 52
4-5 鋰鎳氧化物於氧氣下之之合成機構 56
4-5-1 Ni2O3 生成 56
4-5-2 Ni2O3於氧氣下穩定性研究 60
4-5-3 鋰鎳氧化物之合成速率 60
4-5-3-1 Ni2O3 與Li2CO3之反應 62
4-5-3-1-1 反應 A之XRD分析 62
4-5-3-1-2 反應 B之XRD分析 62
4-5-3-2反應A、B之動力學 65
4-6 小結 68
第五章 鋰鎳檸檬酸凝膠於空氣下之煆燒 71
5-1 鋰鎳有機先驅物於空氣氛煆燒之熱分解及相變 71
5-2 鋰鎳有機先驅物之FTIR解析 74
5-3鋰鎳氧化物結構 74
5-3-1鋰鎳氧化物之反應機構 74
5-3-2 LixNi2-xO2之化學計量及結晶性 77
5-4 不同計量比鋰鎳氧化物之電化學性質 84
5-4-1 計量Li0.99Ni1.01O2之充放電性質 84
5-4-2化學組成對第一次充放電性質影響 90
5-4-3化學組成對充放電過程中相變化影響 91
5-4-4 化學組成對循環壽命影響 92
5-5 小結 92

第六章 固相法合成鋰鎳氧化物之反應機構及動力學 96
6-1 鋰鎳氧化物合成 96
6-1-1 溫度效應 96
6-1-2 LiNiO2 合成反應速率 96
6-2 LiNiO2反應動力學 99
6-3 NiO轉變至LiNiO2之活化能及速率決定步驟 108
6-4 鋁添加對LiNiO2結晶相及動力學之影響 108
6-4-1 LiAlxNi1-xO2(0≦x≦1)結構分析 108
6-4-2 鋁添加對Li2CO3-NiO合成 LiNiO2 之影響 113
6-4-3 添加鋁對LiNiO2合成反應機制之影響 119
6-4-3-1 Al0.02Ni0.98O抑制LiNiO2反應機制 121
6-4-3-2 α-LiAlO2加速LiNiO2反應機制 121
6-5 小結 124

第七章 總結論 125
參考資料 127
自述 138
著作 139
致謝 140
參考資料
1. 許雪萍、陳金銘、施得旭,林月微、姚慶意,” 鋰離子電池材料技術” 126 工業材料 (1997) 104.
2. 袁正宇,“鋰離子電池層狀及反尖晶石陰極材料溶膠凝膠製程研究”,國立中央大學化學工程研究所碩士論文, p. 15 (1999)。
3. J. O. Besenhard, “Handbook of Battery Materials”, Wiley-vch, p. 293 (1999)。
4. R. Bittihn, R. Herr and D. Hoge, “Swing system, a nonaqueous rechargeable oxide cell” J. Power Sources, 43-44 (1993) 223.
5. M. S. Whittingham, R. Chen, T. Chirayil and P. Zavalij, “The intercalation and hydrothermal chemistry of solid electrodes ” Solid State Ionics, 94 (1997) 227 .
6. D. Rahner, S. Machill, H. Schlorb, K. Siury, M. Klob, and W. Plieth, “Intercalation materials for lithium rechargeable batteries ” Solid State Ionics, 86-88 (1996) 891.
7. 楊模樺,” 嵌入式過渡金屬氧化物在鋰電池電極材料上的應用” 工業材料157 (2000) 144.
8. J. Barker, R. Pynenburg and R. Koksbang, “Determination of thermodynamic, kinetic and interfacial properties for the Li/LixMn2O4 system by electrochemical techniques” J. Power Sources, 52 (1994) 185.
9. G. T. K. Fey, W. Li and J. R. Dahn, “LiNiVO4: a 4.8 volt electrode material for lithium cells” J. Electrochem. Soc., 141 (1994) , 2279.
10. C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard and M. Tournoun, “Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2−yO4 (0 ≤ y ≤ 1) ” Solid State Ionics, 81 (1995) 167.
11. Y. E. Eli and W. F. Howard, “LiCuXIICuYIIIMn[ 2-(X+Y)]III,IVO4: 5 V cathode materials” J. Electrochem. Soc., 144, L205 (1997).
12. G. Dutta, A. Manthiram and J. B. Goodenough, “Chemical synthesis and properties of Li1-δ-xNi1+δO2 and Li[Ni2]O4 .” J. Solid State Chem. 96 (1992) 123.
13. T. Nohma, H. Kurokawa, M. Uehara, M. Takahashi, K. Nashio and T. Saito, “Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries.” J. Power Sources 54 (1995) 522.
14. K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, “ J. B., LixNiO2 (015. A. Yamada, K. Miura, K. Hinokuma and M. Tanaka, “Synthesis and structural aspects of LiMn2O4 as a cathode for rechargeable lithium batteries.” J. Electrochem. Soc. 142 (1995) 2149.
16. T. A. Hewston and B. Chamberland, “B. L., A survey of first-row ternary oxides LiMO2 (M=Sc-Cu).” J. Phy. Chem. Solids 48 (1987) 97.
17. Y. M. Hon, K. Z. Fung, S. P. Lin and M. H. Hon, “Electrochemical properties of LiMn2O4 nono-particles synthesized by citric acid gel process.” J. Ceram. Soc. Jap., 109 (2001) 986.
18. C. Delmas, J. P. Peres, A. Rougier, A. Demourgues, F. Weill, A. Chadwick, M. Broussely, F. Perton, Ph. Biensan and P. Willmann, “On the behavior of the LixNiO2 system: an electrochemical and structure overview.” J. Power Sources 68 (1997) 120.
19. H. Kurokawa, T. Nohma, Y. Yamamoto, M. Uehara, K. Nishio and T. Saitoh, “Non-aqueous battery has a lithium-nickel-oxygen cathode” U. S. Patent, 5,308,720 (1993).
20. Y. K. Sun, D. W. Kim and Y. M. Choi, “Synthesis and characterization of spinel LiMn2−xNixO4 for lithium/polymer battery applications ” J. Power Sources, 79 (1999) 231.
21.楊家諭,” 二次鋰離子電池的應用” 工業材料, 117,(1996) 63.
22.楊家諭,”二次鋰離子電池性能介紹”,工業材料,126 (1997) 115
23.許雪萍,”方形二次鋰離子電池材料介紹”工業材料, 130 (1997) 104
24.許雪萍、施德旭、洪為民,”鋰離子二次電池正極材料介紹”,工業材料, 110 (1996) 48.
25.R. J Gummow, M. M.Thackery, W. I. F. David and S.Won , “Lix C0O2 (0<x≦1): a new cathode material for batleries of high energy density” Mat. Res. Bull., 15 (1980) 783
26.T. Ohzuku, H.Konori, K. Sawai and T. Hirai, “Natural graphite as an anode for rechargeable nonaqueous cells” Chem. Express ,5 (1990) 733
27. R. J. Gummow, M. M. Thackeray, W. I. F. David and S. Hull, “Structure and electrochemistry of lithium cobalt oxide synthesized at 400℃” Mat. Res. Bull., 27 (1992) 327 .
28.M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J. I. Itoh, M. Okada and T. Mouri, “Preparation of LiyNi1-xMnxO2 as a cathode for lithium-ion battery”, J. Power Sources,74 (1998) 46.
29.M. Broussely, F. Perton, J. Labat, R. J. Staniewicz and A. Romero, “Li/LixNiO2 and Li/LixCoO2 rechargeable systems: comparative study and performance of practical cells” J. Power Sources, 43 (1993) 209.
30. L. D. Dyer, B. S. Borie and G. P. Smith, “Alkali metal-nickel oxides of the type MNiO2” J. Am. Chem. Soc., 78 (1954) 1499.
31. J. B. Goodenough, D. G. Wickham and W. J. Croft, “Some ferrimagetic properties of the system LixNi1-xO” J. Appl. Phys., 29 (1958) 382.
32. V. W. Bronger, H. Bade and W. Klemm, “Zur kenntnis der miccolate der alkalimetalle” Z. Anorg. Allg. Chem., 333 (1964) 188.
33.R. Kanno, H. Kubo and Y. Kawamoto, “Phase relationship and lithium deintercalation in lithium nickel oxides” J. Solid State Chem., 110 (1994) 216 .
34. T. Ohzuku, A. Ueda and M. Nagayama, “Electrochemistry and structural chemistry of LiNiO2 (R3m) for 4 volt secondary lithium cells” J. Electrochem. Soc., 140, 1862 (1993).
35.林美雲譯, “使用LiMn2O4系正極材料的鋰離子二次電池”,工業材料,145 (1999) 116.
36. 洪逸明,“鋰離子二次電池陰極材料LiMn2O4±δ 之合成及其電化學性質”,國立成功大學材料科學及工程研究所博士論文, pp16-24 (2001)。
37. T. Ohzuku, S. Kitano, M. Iwanaga, H. Matsuno and A. Ueda, “Comparative study of Li[LixMn2−x]O4 and LT-LiMnO2 for lithium-ion batteries ”J. Power Sources, 68 (1997) 646 .
38. P. Barboux, J. M. Tarascon and F. K. Shokoohi, “The use of acetates as precursor for the low-temperature synthesis of LiMnO2 and LiCoO2 intercalation” J. Solid State Chem., 94 (1991) 185.
39. S. Bach, M. Henry, N. Baffier and J. Livage, “Sol-gel synthesis of manganese oxides” J. Solid State Chem., 88 (1990) 325.
40. S. Passerini, F. Coustier, M. Giorgetti and W. H. Smyrl, “Li-Mn-O aerogels” Electrochenical and Solid-State Letters, 2 (1999) 483.
41. J. Cho, G. B. Kim, H. S. Lim, C. S. Kim and S. I. Yoo, “Improvement of structural stability of LiMn2O4 cathode material on 55℃ cycling by sol-gel coating of LiCoO2” Electrochemical and Solid-State Letters, 2 (1999) 607.
42. S. Tao, Q. Wu, Z. Zhan and G. Meng, “Preparation of LiMO2 (M=Co, Ni) cathode materials for intermediate temperature fuel cells by sol-gel processes ” Solid State Ionics, 124 (1999) 53.
43. V. Massaroti, D. Capsoni, M. Bini, G. Chiodelli, C. B. Azzoni, M. C. Mozzati and A. Paleari, “Characterization of sol-gel LiMn2O4 spinel phase” J. Solid State Chemistry, 147 (1999) 509.
44. Y. J. Park, J. G. Kim, M. K. Kim, H. T. Chung and H. G. Kim, “Preparation of LiMn2O4 thin films by a sol–gel method ” Solid State Ionics, 130 (2000) 203.
45. W. Tang, H. Kanoh and K. Ooi, “Lithium ion extraction from orthorhombic LiMnO2 in ammonium peroxodisulfate solutions” J. Solid State Chemistry, 142 (1999) 19.
46. S. Bach, J. Farcy and J. P. P. Ramos, “An electrochemical investigation of Li intercalation in the sol-gel LiMn2O4 spinel oxide ” Solid State Ionics, 110 (1998) 193.
47. L. Hernan, J. Morales, L. Sanchez and J. Santos, “Electrochemical properties of defective Li1−xMn2−δO4 spinels prepared by a sol–gel method used as cathodes in lithium cells ” Solid State Ionics, 104 (1997) 205.
48. 顏富士,”粉末、鬚晶和纖維”,陶瓷技術手冊(上)經濟部技術處,pp27-49 (1994)
49. S. I. Pyun, Y. M. Choi and I. D. Jeng, “Effect of the lithium content on electrochemical lithium intercalation into amorphous and crystalline powdered Li1±δMn2O4 electrodes prepared by sol-gel method ” J. Power Sources, 68 (1997) , 593.
50. S. R. Sahaya Prabaharan, M. Siluvai Michael, T. Prem Kumar, A. Mani, K. Athinarayanasway, and R. Gangadharan, “Bulk synthesis of submicrometre powders of LiMn2O4 for secondary lithium batteries” J. Mater. Chem., 5 (1995) 1035 .
51. W. Yang, Q. Liu, W. Qiu, S. Lu and L. Yang, “A citric acid method to prepare LiMn2O4 for lithium-ion batteries ” Solid State Ionics, 121 (1999) 79 .
52. A. Momchilov, V. Manev and A. Nassalevska, “Potassium vanadates - promising materials for secondary lithium batteries” J. Power Sources, 41 (1993) 305.
53. 蔡政達,“利用FT-IR和13C-NMR光譜探討檸檬酸製程合成鈦酸鋇陶瓷粉末之研究”,國立成功大學材料科學及工程研究所博士論文, pp. 78~109 (1999)。
54. M. P. Pechini, “Barium titanium citrate, barium titanate and processes for producing same” U.S. Pat 3,231,328, Jan. 25, (1966).
55. D. Hennings and W. Mayr, “Thermal decomposition of (BaTi) citrate into barium titanate”, J. Solid State Chem., 26, (1987) 329.
56. G. A. Hutchines. G. H. Macher and S. D. Ross, “Control of Ba: Ti ratio of BaTiO3 at a value of exactly 1 via conversion to BaO•TiO2•3C6H8O7•6H2O”, Am. Ceram. Soc. Bull., 66 (1987) , 681.
57. M. Rajendran and M. S. Rao, “Formation of BaTiO3 from citrate precursor”, J. Solid State Chem., 113 (1994) 239.
58. K. Polawski, J. Lichtenberger, J. K. Frerich, J. Schnitzlein and M. D. Amirdis, “Catalytic oxidation of 1,2-dichlorobenzene over ABO3-type perovskites” Catalysis Today, 62 (2000) 329.
59. M. P. Pechini, “Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor” U.S. Pat 3,330,697, Jul. 11, (1967).
60. L. M. Falter, D. A. Pane and T. A. Friedmann, W. H. Wright and D. M. Grinsberg, “Preparation of ceramic superconductors by the Pechini method”, Bri. Ceram. Proc., 41 (1967) 261.
61. H. Salze, P. odier and B. Cales, “Elaboration of fine micropowders from organometallic polymers precursors’, J. Non-Cryst. Solids, 82 (1988) 314.
62. S. Kumar and G. L. Messing, “Synthesis of barium tetanate by a basic Pechini process”, Mater. Res. Soc. Symp. Proc., 271 (1986) 95.
63. S. G. Cho, P. F. Johnson and R. A. Condrate, “Thermal decomposition of (Sr,Ti) organic precursor during the Pechini process”, J. Mater. Sci., 25 (1990) 4738.
64. A. Bianco, M. Paci and R. Freer, “Zirconium titanate: from polymericd precursors to bulk ceramics”, J. Eur. Ceram. Soc., 18 (1998) 1235.
65. W. J. Lee and T. T. Fang, “The effect of the molar ratio of cations and citric acid on the synthesis of barium ferrite using a citrate process”, J. Mater. Sci., 30 (1995) 4329.
66. M. Kakihana, m. M. Milanova and M. Arima, T. Okubo, M. Yashima and M. Yoshimura, “Polymerized complex route to synthesis of pure Y2Ti2O7 at 750℃ using yttrium-titanium mixed-metal citric acid complex.”, J. Am Ceram. Soc., 79 (1996) 1673.
67. P. A. Lessing, “Mixed-cation oxide powders via polymeric precursors” Am. Ceram. Soc. Bull., 68 (1989) 1002.
68. Y. S. Lee, Y. K. Sun and K. S. Nahm, “Stnthesis and characterization of LiNiO2 cathode material prepared by a adiphic acid-assisted sol-gel method for lithium secondary batteries”, Solid State Ionics 118 (1999) 159.
69. Y. K. Sun and I. H. OH, “Synthesis of LiNiO2 powders by a sol-gel method.” J. Mater. Sci. Lett. 16 (1997) 30.
70. T. Miyashita, H. Noguchi, K. Yamato and M. Yoshio, “Preparation of layer LiNiO2 by alcoholate method and its behavior as a cathode in lithium secondary battery”, J. Ceram. Soc. Jap. 102 (1994)259.
71.R. Alcantara, P. Lavela, J. L. Tirado, R. Stoyanova, E. Kuzmanova and E. Zhacheva, “Lithium-nickel citrate precursors for the preparation of LiNiO2 insertion electrode” Chem. Mater. 9 (1997) 2145.
72. 林敬二、江志強,”紅外線光譜分析”,材料分析,中國材料科學學會, pp. 501~522 (1998)。
73. 彭國文,“鈉鈦矽石(Na2TiOSiO4)與鍺酸鈦鈉(Na2TiOGeO4)系材料之熱水溶液製備、結晶化學及光譜性質研究”,國立成功大學礦冶及材料科學研究所博士論文, pp. 26-34 (1996)。
77. Y. K. Sun, K. H. Lee, S. I. Moon and I. H. Oh, “Effect of crystallinity on the electrochemical behaviour of spinel Li1.03Mn2O4 cathode materials ” Solid State Ionics, 112 (1998) 237.
75. S. W. Freman and L. L. Hench, “Kinetics of crystallization in Li2O-SiO2 glasses”, J. Am. Ceram. Soc., 51 (1968) 382.
76. W. A. Johason and R. F. Mehl, “Reaction kinetics in process of nucleation and growth:, Trans. Am. Inst. Metal Engs., 35 (1938) 416.
77. M. Avrami, “Kinetics of phase change”, J. Chem. Phys., 7 (1939) 1103; 8 (1940) 212; 9 (1941) 177.
78. 王木琴,“Li2O-CaO-Al2O3-SiO2系玻璃陶瓷結晶相變化研究”,國立成功大學材料科學及工程研究所博士論文, pp. 7-30 (1988)。
79. J. D. Hankcock and J. H. Sharp, “Method of comparing solid-state kinetic data of kaolinite, brucite and BaCO3.” J. Am. Ceram. Soc. 55 (1972) 74.
80. J. D. Tsay and T. T. Fang, “Effects of molar ratio of citric acid to cations and pH value on the formation and thermal-decomposition behavior of barium titanium citrate.” J. Am. Ceram. Soc. 82 (1999) 1409.
81. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition, pp. 231-233, John Wiley & Sons, U. S. A. (1986).
82. M. Kakihana, T. Nagumo, M. Okamoto, and H. Kakihana, “Coordination Structures for Uranyl Carboxylate Complexes in Aqueous Solution Studied by IR and 13C NMR Spectra”, J. Phys. Chem., 91 (1987) 6128.
83. L. W. Tai and P. A. Lessing, “Modified resin-intermediate processing of perovskite powders. part I: Optimization of polymeric precursors” J. Mater. Res. 7 (1992) 502.
84.Eype, Spottiswoode, Dictionary of Organic Compounds, Oxford University Press, New York, 1965, p715.
85. E. Zhacheva, R. Stoyanova, M. Georova, R. Alcantara, J. Morales and J. L. Tirado, “Lithium-cobalt citrate precursors in the preparation of intercalation electrode materials” Chem. Mater. 8 (1996) 1429.
86. R. Moshtev, P. Zlatilova, V. Manev, and K. Tagawa, “Synthesis of LiNiO2 in air atmosphere: X-ray diffraction characterization and electrochemical investigation.”, J. Power Sources 62 (1996) 59.
87. R. A. Kroger, The chemistry of Imperfect Crystals, vol. 2, North-Holland, Amsterdam, Netherlands, 1974.
88. T. Sata, “High-temperature vaporization of Li2O component from solid solution LixNi1-xO in air ” Ceram. Int. 24 (1998) 53.
89. A. Rougier, P. Gravereau and C. Delmas, “Optimization of the composition of the Li1-zNi1+zO2 electrode materials: structural, magnetic, and electrochemical studies.” J. Electrochem. Soc. 143 (1996) 1168.
90. J. R. Dahn , E. W. Fuller, M. Obrovac and U. von Sacken”Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li ion cell” Solid State Ionics 69 (1994) 263.
91. H. Arai, S. Okada, Y. Sakuria and J. I. Yamaki, ”Reversibility of LiNiO2 cathode” Solid State Ionics 95 (1997) 275.
92. J. Barker, R. Koksbang and M. Y. Saidi, ”An electrochemical investigate into the lithium insertion properties of LixNiO2 (0≦x≦1).” Solid State Ionics 89 (1996) 25.
93. W. Li, J. N. Reimers and J. R. Dahn, ” In situ X-ray diffraction and electrochemical studies of Li1-xNiO2.” Solid State Ionics 67 (1993) 123.
94. A. Koawa and P. A. Powers, “The manganese dioxide electrode in alkaline electrolyte;the electron-proton mechanism of the discharge process from MnO2 to MnO1.5.” J. Electrochem. Soc., 113 (1966) 870.
95. H. Arai, S. Okada, H. Okada. M. Ichimura, and J. I. Yamaki, ”Characterization and cathode performance of Li1-xNi1+xO2 prepared with the excess lithium method” Solid State Ionics 80 (1995) 261.
96. A. Hirano, R. Janno, Y. Kawamoto, K. Yamaura, M. Takano, K. Ohyama, M. Ohashi and Y. Yamaguchi, “Relationship between non-stoichiometry and physical properties in LiNiO2” Solid State Ionics 78 (1995) 123.
97. J. P. Peres, F. Weill and C. Delmas, “Lithium/ vacancy ordering in the monoclinic LixNiO2 (0.50≦x≦0.75) solid solution” Solid State Ionics 116 (1999) 19.
98. S. M. Ohlberg and D. W. Strickler, “Determination of percent crystallinity of partly devitrified glass by X-ray diffraction” J. Am. Ceram. Soc. 45 (1962) 171.
99. J. Beretka, “Kinetic analysis of solid-state reactions between powdered reactants.” J. Am. Ceram. Soc. 67 (1984) 615.
100. J. H. Sharp, G. W. Brindley and B. N. Narahari Achar, “Numerical data for some commonly used solid state reaction equations.” J. Am. Ceram. Soc. 49 (1966)379.
101. J. H. Taplin, “Index of reaction-a unifying concept for the reaction kinetics of powders.” J. Am. Ceram. Soc. 57 (1974) 140.
102. R. E. Carter, “Kinetic model for solid-state reactions.” J. Chem. Phys., 34 (1961) 2010.
103. W. Jander, “Reaktionen im festen zustande bei höheren temperaturen.” Z. Anorg. Allg. Chem. 163 (1927) 1.
104. S. P. Mitoff, “Electrical conductivity and thermodynamic equilibrium in nickel oxide.” J. Chem. Phy. 35 (1961) 882.
105. A. V. D. Ven and G. Ceder, “Lithium diffusion in layer LixCoO2” Electrochem. Solid-State Lett. 3 (2000) 301.
106. R. Stoyanova, E. Zhecheva, E. Kuzmanova, R. Alcantara, P. Lavela and J. L. Tirado, “Aluminium coordination in LiNi1−yAlyO2 solid solutions” Solid State Ionics, 128 (2000) 1.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top