1.K. Schwaytzwalder, “Injection molding of ceramic materials", Am. Ceram. Soc. Bull., 28 [11] (1949) 459-461.
2.M. J. Edirinsinghe, “Fabrication of engineering ceramics by injection molding”, Ceramic Bulletin, 70 [5] (1991) 824-831.
3.J. A. Mangels and W. Trela, “Ceramic components by injection molding”, in Advances in Ceramics, 9, edited by J. A. Manaels & G. L. Messing, (1984) 220-223.
4.M. J. Edirisinghe and J. R. G. Evans, “Review: fabrication of engineering ceramics by injection molding Ⅰ Material Selection", Int. J. High Techology Ceramic, 2 (1986)1-31.
5.M. J. Edirisinghe and J. R. G. Evans, “Review: fabrication of engineering ceramics by injection molding Ⅱ Techniques”, Int. J. High Techology Ceramic, 2 (1986) 249-278.
6.R. M. German, “Technological Barriers and Opportunities in Powder Injection Molding”, Powder Met. Int., 25 [4] (1993) 165-169.
7.J. W. O. Connor, B. O. Rhee and C. I. Chung, “Solution mixing vs. mechanical mixing for metal powder with a solid polymer solution binder", Advances in Powder Metallurgy, 2 (1991) 85-93.
8.R. O. Rhee, M.Y. Cao, H. R. Zhang, E. Streicher and C. I. Chung, “ Improved wax-based binder formulations for powder injection molding" Advances in Powder Metallurgy, 2 (1991) 43-58.
9.N. Kasahara, K. Saitou, Y. Kankawa and Y. Kaneko, “Extraction of Binder in Injection Molding”, J. of Powder and Powder Metallurgy of Japan, 38 [6] (1991) 80-82.
10.J. M. Harris, “Introduction to biotechnical and biomedical applications of PEG”, in Poly (ethylent glycol) chemistry, ed. by J. M. Harris, Plenum press, New York and London, (1992) 1-14.
11.N. Kasahara, K. Saitou, Y. Kankawa and Y. Kaneko, “Injection molding of ceramics powder with polyethylene glycol (PEG)”, J. of Powder and Powder Metallurgy of Japan, 38 [6] (1991) 83-87.
12.K. F. Hens and R. M. German, ”Advanced processing of advanced materials via powder injection molding”, Advanced in Powder Metallurgy & Particulate Materials, 5 (1993) 153-164.
13.M. Y. Cao, J. W. O. Connor and C. I. Chung, “A new water soluble solid polymer solution binder for powder injection molding”, Powder Injection Molding Symposium, (1992) 85-98.
14.M. Y. Anwar, H. A. Davies, P. F. Messer and B. Ellis, “A new binder system for powder injection molding”, Advanced in Powder Metallurgy & Particulate Materials, 6 (1995) 15-25.
15.K. Hunold, J Greim and A Lipp, “Injection moulded ceramic rotors -comparison of SiC and Si3N4”, Powder Met. Int., 21 (1989) 17-23.
16.T. Zhang, S. Blackburn and J. Bridgwater, "Debinding and sintering defects from particles oriention in ceramic injection molding", J. Mater. Sci., 31[22], (1989) 5891-5896.
17.T. Zhang, S. Blackburn and J. Bridgwater, "The oriention of binder and particle during ceramic injection molding", J. Europ. Ceram. Soc., 17[1], (1997) 101-108.
18.R Billiet, “The challenge of tolerance in powder metallurgical injection moulding”, Prog. Powder Metall., 41 (1985) 723-741.
19.R. S. Libb, B. R. Patterson and H. A. Heflin, “Production and evaluation of powder metal injection moulding feedstocks”, Prog. Powder Metall., 42 (1986) 95-104.
20.B. R. Patterson, R. J. Waikar and M. T. Young, “Several aspects of powder injection moulding”, Prog. Powder Metall., 42 (1985) 85-94.
21.B. C. Mutsuddy and R. Ford, “Ceramic injection molding, Chapman & Hall, New York, 1995, pp. 66-137, 245-289.
22.J. Warren and R. M. German, “The effect of powder characteristics on binder incorporation for injection molding feedstock”, Modern Devolpment in Powder Metallurgy, 18 (1988) 391-402.
23.J. S. Reed, Principles of ceramic processing, Second edition, Wiley Inter. Science, New York (1995) 39.
24.F. F. Lange and M. Metcalf, “Processing-related fracture origins Ⅱ agglomerate motion and cracklike internal surface caused by differentilal sintering”, J. Am. Ceram. Soc., 66 (1983) 398-406.
25.B. Kellett and F. F. Lange, “Stresses induced by differentilal sintering in powder compacts”, J. Am. Ceram. Soc., 67 (1984) 369-371.
26.F. F. Lange, “Sinterability of agglomerate powders”, J. Am. Ceram. Soc., 67 (1984) 83-89.
27. C. I. Chung, B. J. Carpenter, M. Y. Cao, C. X. Lin and B. O. Rhee, “ Property characterization of feedstock for powder injection molding”, Adv. In Powder Met., 3 (1990) 283-318.
28.C. L. Quackenbush, french and J. T. Neil, "Fabrication of Sinterable Silicon Nitride by Injection Moulding", Proc. Ceram. Eng. Soc., 3 (1982) 20-33.
29.J. C. Benhoch, “New binder system for ceramic injection molding”, Ceramic Powder Science Ⅲ, (1994) 120-127.
30.溫紹炳,”粉體混合與造粒”, 粉末冶金學會, (1994) 49-76.
31.吳榮源、韋文誠,”Torque evolution of alumina injection molding feedstocks during kneading”, 中國材料科學學會87年論文集, (1998) 91-94.
32.M. J. Edirisinghe and J. R. G. Evans, “Properties og ceramics injection moulding formulation part Ⅰ melt rheology”, J. Mat. Sci.", 22 (1987) 269-277.
33.W. J. Tseng, D. M. Liu and C. K. Hsu, “Influence of stearic acid on suspension structure and green microstructure of injection-molded zirconia ceramics”, Ceram. Int., 25 (1999) 191-195.
34.X. Chen, H. Cheng and J. Ma, “ A study on the stability and rheological behavior of concentrated TiO2 dispersions”, Powder Technology, 99 (1998) 171-176.
35.D. M. Liu, “Effect of dispersants of the rheological behavior of zirconia-wax suspensions”, J. Am. Ceram. Soc., 82 [5] (1999) 1162-1168.
36.S. T. Paul Lin and R. M. German, “The influence of powder loading and binder additive on the properties of alumina injection-moulding blends”, J. Mater. Sci., 29 (1994) 5367-5373.
37.R. M. German, “Powder injection molding”, Metal Powder Industries Federation. Princeton, NJ, 1990, pp. 147-178, 281-317.
38.C. L. Quackenbush, and J. T. Neil, “Fabrication of sinterable silicon nitride by injection moulding", Proc. Ceram. Eng. Soc. 3, (1982) 20-33.
39.M. J. Edirisinghe and J. R. G. Evans, “Rheology of ceramic injection moulding formulations”, Br. Ceram. Trans. J., 86 (1987) 18-22.
40.M. J. Edirisinghe and J. R. G. Evans, “Properties of ceramic injection moulding Formulations”, J. Mat. Sci. , 22 (1987) 269-277.
41.劉士榮,”高分子流變學-塑膠之加工特性”, 1995, pp. 70-84.
42.R. J. Huzzard and S. Blackburn, “ Slip flow in concentrated alumina suspensions”, Powder Technology, 97 (1988) 118-123.
43.J. Zheng and J. S. Reed, ”Ceramic Extrusion with PEG”, Am. Ceram. Soc. Bull., 73 (1994) 61-66.
44.J. J. Bnebow, T. A. Lawson, E. W. Oxley and J. Bridgwater, “Prediction of paste extrusion pressure” Am. Ceram. Soc. Bull., 68 (1989) 1821-1824.
45.T. Sasaki, “Debinding behavior for injection molded alumina compacts”, J. Powder and Powder Metallurgy Jpn., 40 (1993) 232-235.
46.H. H. Angermann, o. U. V. D. Biest, “ Low temperature debinding kinetics of two-component model system”, Int. J. Powder Metallurgy, 29 (1993) 239-250.
47.H. M. Shaw and M. J. Edirisinghe, “Porosity development during removal of organic vehicle from ceramic injection mouldings”, J. Europ. Ceram. Soc., (1994) 135-142.
48.I. E. Pinwill, “A study of binder removal from powder injection moulded alumina bodies", PH. D. Thesis, Brunel University, 1990, pp.25-40.
49.R. Vetter, M. J. Sanders, I. Majewska-Glabus and L. Z. Zhuang, “Wick-debinding in powder injection molding”, International Journal of Powder Metallurgy, 30 (1994) 115-124.
50.S. T. Lin and R. M. German, “Extraction debinding of injection molded part debinding and sintering vacuum furnances”, Powder Met. Int. 21 (1989) 19-23.
51.S. T. Lin, “Control of structural integrity and microstructural evolution in powder injection molded alumina through the interaction between binder and powder", PH. D. Thesis, Rensselaer Polytechnic Institute, Troy, N. Y., January, 1991.
52.S. T. Lin and R. M. German, “Extraction debinding of injection molded parts by condensed solvent", Powder Metall. Int., 21[5] (1989) 19-24.
53.M. A. Strivens, ”Formation of ceramic moldings”, 1960, U. S. Patent 29399199.
54.H. E. Amaya, “Solvent debinding: principle and application", Advances in Powder Metall., 3 (1990) 233-246.
55.L. D. Berger Jr. and M. T. Ivison, “Ethylene oxide polymer”, in Water-Soluble Resins, edited by R. L. D. Davidson and M. Sittig. Chapman & Hall. Ltd., London, (1963)169-201.
56.M. A. Strivens, “Injection molding of ceramic insulating materials", Bull. Am. Ceram. Soc., 42 (1963) 13-19.
57.B. J. Carpenter, ”Melt rheology of iron powder/wax mixtures", MS Thesis, Rensselaer Polytechnic Institute, May, 1988.
58.F. E. Weir, “Moldability of plastics based on melt rheology”, SPE Trans., 1 (1963) 32-41.
59.Y. Li, B. Huang and X. Qu, “ Viscosity and melt rheology of metal injection moulding feedstocks”, Powder Metallurgy, 42 [1] (1999) 86-90.
60.S. Lowell and J. e. Shields, “Powder surface area and porosity, 2nd ed., Chapman and Hall, London, (1984) 103-104.
61.謝永明,”粉末射出成型溶劑脫脂機構之研究”, 台灣大學材料科學與工程學研究所碩士論文, 1993年6月, pp.44-46.62.R. M. German and A. Bose, “Injection molding of metals and ceramics”, MPIF, Princeton, NJ, (1997) 175-184.
63.J. Woodthorpe, M. J. Edirisinghe and J. R. G. Evans, “Properties of ceramic injection moulding formations”, J. Mat. Sci., 24 (1989) 1038-1048.
64.F. W. Billmeyer, Jr., “Textbook of Polymer Science”, John Wiley&Sons, New York, 2nd ed., (1984).
65.R. Kjellander and E. Florin,”Water structure and changes in thermal stability of the system Poly(ethylene oxide)-water” J. Chem. Soc., Faraday Trans., 1 [77] (1981) 2053-2077.
66.N. B. Graham, N. E. Nwachuku, D. J. Walsh, “Interaction of poly(ethylene oxide) with solvents: 1. Preparation and swelling of a crosslinked poly(ethylene oxide) hydrogel”, Polymer, 23 (1982) 1345-1349.
67.N. B.Graham, M., N. Zulfiqar, E. Nwachuku, and A. Rashid, “Interaction of poly(ethylene oxide) with solvents: 4. Interaction of water with poly(ethylene oxide) crosslinked hydrogels”, Polymer 31, (1990) 909-916.
68.T. Ishidao, M. Akagi, H. Sugimoto, Y. Onoue, Y. Ikai and Y. Arai, “Swelling equilibria of poly(N-isopropylacrylamide) gel in aqueous polymer solutions”, Fluid Phase Equilibria, 104 (1995) 119-129.
69.K. B. Keys, F. M. Andreopoulous, and N. A. Peppas, “Poly(ethylene glycol) star polymer hydrogels” Macromolecules, 31 (1998) 8149-8156.
70.J. Gayet, P. He and G.. Fortier, “Bioartificial polymeric material: Poly(ethylene glycol) crosslinked with albumin”, J. Bioactive Compat. Poly., 13, (1998) 179-197.
71.N. B. Graham, “Poly(ethylene glycol) gels and drug delivery”, in Poly (ethylent glycol) chemistry, ed. by J. M. Harris, Plenum press, New York and London, (1992) 263-281.
72.B. Clayton, T. V. Chirila, and P. D. Daltov, “ Hydrophilic sponges based on 2-hydroxyethyl”, Polymer International 42 [1] (1997) 45-56.
73.B. C. Mutsuddy, “Formulation of injection molding binder systems", Chem. Eng. Comm., 74 (1988) 137-153.
74.M. S. Thomas and J. R. G. Evans, “Non-uniform shrinkage in ceramic injection-molding”, Br. Ceram. Trans., [87] 1988 22-26.
75.M. Takahashi, S. Suzuki, H. Nitanada and E. Arai, “Mixing and flow characteristics in the alumina/thermoplastic resin system”, J. Am. Ceram. Soc., 71 (1988) 1093-1099.
76.Y. Ohyama, N. Kasahara, Y. Kaneko, H. Iwasaki, Y. Kakawa and K. Saitoh, “Injection molding of alumina-characterization of debinding process”, J. of Powder and Powder Metallurgy of Japan., 36 [2] (1989) 100-103.
77.J. K. Wright, M. J. Edirisinghe, J. G. Zhang and J. R. G. Evans, “Particle packing in ceramic injection molding”, J. Am. Ceram. 73 (1990) 2653-2658.
78.I. E. Pinwill, M. J. Edirisinghe and M. J. Bevis, “Shrinkage during removal of oragnic vehicle from injection moulded alumina bodies", Powder Metallurgy, 35 [2] (1992) 113-116.
79.T. Sasaki, “Debinding behavior for injection molded alumina compacts”, J. of Powder and Powder Netallurgy of Japan, 40 [2] (1993) 232-235.
80.H. M. Shaw and M. J. Edirisinghe, “"Porosity development during removal of organic vehicle from ceramic injection mouldings”, J. Eur.. Ceram. Soc., (1994) 135-142.
81.S. T. Lin and R. M. German, “"Interaction between binder and powder in injection moulding of alumina”, J. Mat. Sci., 29 (1994) 5207-5212.
82.H. K. Lin and S. C. Lee, “Thermal, solvent, and vacuum debinding mechanisms of PIM compacts”, Materials and Manufacturing Processes, 12 [4] (1997) 593-608.
83.Y. M. Hsieh, “Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts”, Metallurgical and Materials Transactions, 27A (1996) 245-253.