(54.236.58.220) 您好!臺灣時間:2021/03/08 08:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李俊德
研究生(外文):Chun-Te Li
論文名稱:添加氧化鐿之氮化矽陶瓷的高溫動態疲勞行為研究
論文名稱(外文):Investigation of high temperature dynamic fatigue behavior of silicon nitride with ytterbium oxide as a sintering additive
指導教授:黃肇瑞黃肇瑞引用關係
指導教授(外文):Jow-Lay Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:90
語文別:中文
論文頁數:113
中文關鍵詞:慢速裂縫成長氮化矽高溫性質動態疲勞
外文關鍵詞:dynamic fatiguesilicon nitrideslow crack growthhigh temperature performance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:386
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
  本實驗針對添加6wt%Yb2O3及2wt%Al2O3為助燒結劑經氣壓燒結燒成之β相氮化矽陶瓷,深入探討在1000、1200、1300及1400℃的高溫環境下之動態疲勞性質;並藉由晶相及微結構等分析觀察,探討於高溫下影響氮化矽陶瓷的疲勞破壞行為之機構及因素;再藉由破斷面分析討論氮化矽陶瓷在高溫下的裂縫成長行為模式。冀能依此對氮化矽陶瓷的高溫應用資訊有所貢獻。

  由動態疲勞測試得知,添加6wt%Yb2O3及2wt%Al2O3之氮化矽陶瓷於1200℃的環境下具有最佳的動態疲勞性質,其疲勞指數(n)為59.59;並與其他相關研究比較獲知,此成分之氮化矽陶瓷在高溫下具有良好的抗疲勞特性。

  氮化矽陶瓷中,雖然燒結後殘留於晶界之非晶質相於高溫時易軟化並影響高溫性質,但是在適度溫度(1200℃)下可使晶界非晶質相結晶化,進而強化陶瓷自身之強度,並藉此提昇氮化矽陶瓷之抗疲勞性質。此乃由於經結晶化的晶界相具較高的彈性模數,故能阻礙高溫下的裂縫成長;而晶界相結晶化的程度,隨著溫度的提升而增加,且處於高溫下的時間愈久,其結晶化程度愈增,這樣的行為嚴重影響氮化矽陶瓷在高溫下的性質表現。

  然而在更高的溫度(1300、1400℃)下,氮化矽陶瓷會產生明顯的氧化行為,進而使材料劣化,疲勞指數大幅下降。伴隨氧化行為的發生,試片內部的氧原子與陽離子會有明顯的擴散發生,這將使其表面之晶界相黏度降低,因而利於次臨界裂縫的成長,使其抗疲勞性質大減,也成為氮化矽陶瓷在高溫環境下應用之主要限制。

  觀察高溫下動態疲勞測試後之破斷面微結構,均可發現明顯的分區,顯示出其破壞方式明顯的不同,並可藉此推知高溫下氮化矽陶瓷慢速裂縫成長的模式。其中明顯粗糙的一區為氧化作用所促進的慢速裂縫成長所造成,其大小愈大所對應疲勞強度愈低,顯示嚴重的慢速裂縫成長將不利於氮化矽陶瓷之高溫性質,而實驗指出在較高的溫度及較慢的應變速率下,會有較顯著的慢速裂縫成長行為。而這樣的現象亦表示高溫環境下,氧化所促進之慢速裂縫成長行為將主導整個破壞的發生。

  於高溫環境中,且在很慢的荷重速率下,氮化矽陶瓷可能由於潛變行為的發生而導致嚴重的塑性變形;相較於常溫下的彈性行為,塑性行為的發生使其強度衰減甚劇,並使其高溫破壞機制更加複雜。

  另外,氮化矽陶瓷於高溫環境下時,由於高溫使晶界相軟化,再加上氧化作用影響,其表面會產生非晶質相的黏滯流。然而藉由這些非晶質相的披覆,裂縫可成產生癒合現象;且裂縫尖端亦因此而變鈍,而減少應力的集中,故這樣的現象將有助於抵抗裂縫的慢速成長。
  The dynamic fatigue performance of gas-pressure-sintered β-phase silicon nitride containing 6wt.% ytterbium oxide and 2wt.% aluminum oxide as a sintering aid have been investigated in four-point flexure at 1000, 1200, 1300 and 1400℃ in ambient air using different loading rates from 0.01 to 1 mm/min.

  The fatigue strength decreased with decreasing loading rate at all temperatures, and the fatigue resistance at 1200℃ was better, i.e. fatigue parameter (n) was higher than that at 1000℃.The superior fatigue resistance at 1200℃ was attributed to crystallization and refractoriness of grain boundary phases. Crack healing and crack blunting could also influence the crack propagation at high temperature.

  This material was more susceptible to slow crack growth, which was reflected by the slopes of the flexure strength vs. loading rate curves, as the test temperature was increased to 1300 and 1400℃. Oxidation assisted slow crack growth was the dominant damage mechanism at 1300 and 1400℃, and creep damage may also affect the fatigue behavior in low loading rate.

  In addition, all fracture surfaces possessed sweeping stress-oxidation damage zone characterizing subcritical crack growth at high temperature. The formation and growth of a stress-oxidation damage zone are primarily responsible for the strength and fatigue resistance degradation of silicon nitride ceramics at elevated temperature in air atmosphere.
論 文 摘 要 I
Abstract IV
總 目 錄 VI
圖 目 錄 X
表 目 錄 XVI

第一章 緒 論 1
  1-1 前 言 1
  1-2 研究目的與重點 4

第二章 理論基礎與文獻回顧 6
  2-1 氮化矽簡介 6
  2-2 助燒結劑的影響 8
    2-2-1 助燒結劑的作用 8
    2-2-2 自形體的成核和成長 9
    2-2-3 助燒結劑對微結構之影響 9
    2-2-4 助燒結劑對高溫機械性質的影響 11
    2-2-5 非晶質相的結晶化模式 12
  2-3 單一相氮化矽的韌化機構 14
  2-4 陶瓷的裂縫成長 20
    2-4-1 裂縫成長速率 20
    2-4-2 穩定裂縫成長的條件 23
  2-5 疲勞行為 24
    2-5-1 疲勞現象 24
    2-5-2 動態疲勞 26
    2-5-3 具壓痕裂縫的疲勞行為 30
    2-5-4 具壓痕裂縫的動態疲勞行為 34

第三章 實驗方法與步驟 37
  3-1 起始原料及試樣製備 37
    3-1-1 起始粉末規格 37
    3-1-2 起始粉末的製備 37
    3-1-3 生坯的製備 40
    3-1-4 試樣的燒結 40
    3-1-5 燒結體密度量測 40
  3-2 高溫疲勞測試 41
    3-2-1 疲勞試片的準備與處理 41
    3-2-2 高溫動態疲勞 43
  3-3 微結構的觀察及分析 43
    3-3-1 晶相分析 43
    3-3-2 SEM觀察 44
    3-3-3 STEM觀察 44

第四章 結果與討論 46
  4-1 燒結體的密度、相及微結構 46
  4-2 高溫動態疲勞行為 50
    4-2-1 疲勞指數(fatigue parameter) 50
    4-2-2 溫度與疲勞強度的關係 55
    4-2-3 荷重速率與疲勞強度的關係 57
  4-3 晶界相結晶化對疲勞性質的影響 62
    4-3-1 XRD繞射分析 62
    4-3-2 晶界結晶相分析 66
  4-4 高溫氧化行為 72
    4-4-1 氧化導致之元素擴散現象 73
    4-4-2 鈍性氧化與活性氧化 78
  4-5 高溫下裂縫成長行為模式 79
    4-5-1 高溫動態疲勞破斷面分析 80
    4-5-2 應力氧化破壞區大小與疲勞強度之關係 84
    4-5-3 高溫下次臨界裂縫延伸行為模式 93
  4-6 裂縫鈍化╱裂縫癒合(crack blunting/healing) 95

第五章 結 論 101
  I. 高溫疲勞行為 101
  II.高溫下的裂縫成長行為 102

參 考 文 獻 103
致 謝 112
作者簡歷 113


圖 目 錄
Fig.2-1 Atomic arrangement of (a) A/B layers and (b) C/D layers. 7
Fig.2-2 Expressions for the effective crystallite surface A(v) in tetrahedrally shaped pockets. 13
Fig.2-3 Schematic of twist of a crack around rods of two aspect ratio, R, at constant volume fraction. 15
Fig.2-4 Relative toughness predictions from crack deflection model for rod-shaped particle of three aspect ratios. 17
Fig.2-5 Several crack wake mechanisms can be operative in self-reinforced silicon nitride including: crack bridging by intact elongated grains (a), Frictional translation or rotation of partially separated grains (b), and frictional pullout of elongated grain(c). 18
Fig.2-6 Increase of growth rate with crack size. 21
Fig.2-7 A schematic representation of typical K-V curve. K0 is the stress corrosion limit for the system and KT is the stress intensity factor at the onset of region II. V0 is the velocity acquired by the crack when K reached K0; VT is the constant crack velocity in region II. 22
Fig.2-8 A schematic representation of a typical curve of fatigue crack growth velocity versus stress intensity factor. 25
Fig.2-9 Schematic illustration for loading condition of static fatigue(a), dynamic fatigue(b). 27
Fig.2-10 Model indentation-flaw system. (a) Vickers indenter, peak load P, generate radial/median crack, characteristic dimension c (equilibrium value c0) at completion of contact, with further, subcritical extension to c0’ on exposure to reactive environment. (b) Constant tensile stress σa augments residual contact field (represent by “ghost” contact), causing cracks system to expand subcritically to failure configuration. 31
Fig.2-11 Stress intensity factor for indentation flaw with residual stress. Point I represents (stable) equilibrium configuration at completion of indentation cycle; II represent (unstable) configuration at failure in subsequent strength test. 33
Fig.2-12 Normalized dynamic fatigue curves for specimens containing indentation flaws with residual stress. Computed for specified n and selected residual-stress parameters within range 0≦Xr≦1. 36
Fig.3-1 Flow chart showing experimental procedure of dynamic fatigue testing. 38
Fig.3-2 Schematic of a bend specimen with Vickers indent on the sample surface. 42
Fig.4-1 Comparison of XRD patterns of the raw powder and as-sintered silicon nitride specimens. 48
Fig.4-2 SEM micrographs of silicon nitride with 6wt%Yb2O3 and 2wt%Al2O3 as sintering additives. Sample was sintered at 1800℃ for 1h under 1 MPa N2. 49
Fig.4-3 Fatigue strength as a function of loading rate at 1000, 1200, 1300 and 1400℃ in ambient air. The indentation load is 196N. 51
Fig. 4-4 Variation of apparent fatigue parameter n¢ and true fatigue parameter n of silicon nitride versus dynamic fatigue testing temperature. 52
Fig.4-5 A schematic representative of atomic bonding force versus atom distance. 56
Fig.4-6 Plastic deformation of silicon nitride specimen after dynamic fatigue test at 1400℃ and 0.01mm/min of loading rate. 58
Fig.4-7 Stress-strain plot of silicon nitride specimen tested at 1200℃ with 0.5mm/min loading rate. 60
Fig.4-8 Stress-strain plot of silicon nitride specimen tested at 1400℃ with 0.01mm/min loading rate. 61
Fig.4-9 XRD profiles of silicon nitride obtained after dynamic fatigue tests at 1000, 1200, 1300, 1400℃. The XRD profile of as-sintered silicon nitride was also displayed for comparison. 63
Fig.4-10 Slow scanning XRD analysis of silicon nitride specimens after dynamic fatigue tests at 1000, 1200, 1300 and 1400℃. All peaks indicate Yb2Si2O7. The scanning rate was 0.5o 2q/min. 65
Fig.4-11 TEM micrograph and diffraction patterns of silicon nitride specimen dynamic fatigue tested at 1000℃ in ambient air. (a) bright field image 67
Fig.4-12 TEM micrograph of silicon nitride specimen fatigue tested at 1200℃ in ambient air. 69
Fig.4-13 HRTEM lattice image of silicon nitride specimens showing the intergranular amorphous films. The specimens were dynamic fatigue tested at (a) 1200℃, (b) 1300℃. 71
Fig.4-14 Silicon nitride specimens with visible color change before and after dynamic fatigue test at 1000, 1200, 1300 and 1400℃. 74
Fig.4-15 Polished cross-section of silicon nitride specimens (a) 1200℃, (b) 1300℃ and (c) 1400. A light colored contour is visible in (b) and (c). 75
Fig.4-16 Oxygen and Ytterbium content (atom-%) detected by EDS on the surface and cross-section center of silicon nitride after fatigue test at different temperatures. S stands for surface, C cross section center. The subscript -s and -c indicates surface and cross-section center respectively. 77
Fig.4-17 Fractured surfaces of silicon nitride specimens after dynamic fatigue test at (a) 1000℃, (b) 1200℃, (c) 1300℃ and (d) 1400℃ with an loading rate of 0.1mm/min. Three distinguishable zones are observed on each surface. 81
Fig.4-18 SEM fractographs of silicon nitride specimens after dynamic fatigue test (at 1mm/min loading rate at 1200℃). 83
Fig.4-19 SEM fractographs of silicon nitride specimens after dynamic fatigue test (1300℃, 0.01mm/min loading rate) 85
Fig.4-20 Fractured surfaces of silicon nitride specimens after dynamic fatigue test with (a) 1mm/min, (b) 0.5mm/min, (c) 0.1mm/min and (d) 0.01mm/min loading rate at 1300℃. Three distinguishable zones ware observed for each test condition. 87
Fig.4-21 A schematic representation showing the stress-oxidation damage zone size identification. The dx and dy indicate the stress-oxidation damage zone size of the surface and interior respectively. 88
Fig.4-22 Variation of the size of stress-oxidation damage zone and fatigue strength obtained at 0.1 mm/min loading rate and different testing temperature. 90
Fig.4-23 Variation of the size of stress-oxidation damage zone and fatigue strength obtained at 1300℃ and different loading rate. 91
Fig.4-24 Schematic illustration showing the extending behaviors of the stress-oxidation damage zone at elevated temperatures in ambient air environment. 94
Fig.4-25 Typical SEM photographs showing crack propagating path with the observation of (a) crack bridging, pull out and grain rotation (b) intergranular fracture and (c) transgranular fracture and crack deflection. The crack was introduced by indentation at room temperature. 96
Fig. 4-26 Typical SEM photographs showing crack propagating path with the observation of (a) crack healing (b) crack tip blunting. Crack was introduced by indentation at room temperature and annealed at 1200℃ for 8 minutes. 98
Fig.4-27 Typical SEM photographs showing (a) crack healing (b) oxidation “Pest” on surface. Specimen was applied an indentation at room temperature and annealed at 1400℃ for 8 minutes. 99

表 目 錄
Table 3-1 Characteristics of Si3N4 powders (supplied by UBE Corp.) 39
Table4-1 Summary of the fatigue parameter n obtained under different processing conditions. 54
Table 4-2 Chemical analysis of specimen tested at 1200℃by EDS at corresponding points shown in above figure. 70
Table 4-3 Testing time during dynamic fatigue test at all condition of silicon nitride specimens. 92
1.M.J. Hoffmann and G. Petzow, “Microstructure Design of Si3N4 Based Ceramics”, p.3-14 in Silicon Nitride Ceramics, Edited by I-W Chen, P.F. Becher, M. Mitomo, G. Petzow and T.S. Yen, Materials Research Society, Pittsburgh, PA, 1993.

2.M. Taguchi, “Application of High–Technology Ceramics in Japanese Automobiles”, Adv. Ceram. Mater., 2[4]752-62(1987).

3.P.Becher, “Microstructural Design of Toughened Ceramics”, J. Am. Ceram. Soc.,74[2]255-269(1991).

4.C.W.Li, and J.Yamanis, “Super-Tough Silicon Nitride with R-Curve Behavior”, Ceram. Eng. Sci. Proc., 10[7-8], 632-645(1989)

5.A.Okada, and N. Hirosaki,” Effects of microstructure on the R-curve behaviour of sintered silicon nitride”, J.Mat.Sci.,25,1656-61(1990).

6.G.Himsolt, H. Knich, H. Huebner and F.W. Kleinlein, “Mechanical Properties of Hot-Pressed Silicon Nitride with Different Frain Structure”, J. Am. Ceram. Soc., 62[1-2] 29-32, 1979.

7.F.F. Lange, “Fracture Toughness of Si3N4 as a Function of the Initial α-Phase Content”, J. Am. Ceram. Soc., 62[7-8] 428-30, 1979.

8.C.W. Li and J. Yamanis, ”Super-Tough Silicon Nitride with R-Curve Behavior”, Ceram. Eng. Sci., Proc., 10[7-8] 632-45, 1989.

9.F. Wu, H. Zhuang, L. Ma and X. Fu, “Self-Reinforced Silicon Nitride by Gas Pressure Sintering”, Ceram. Eng. Sci., Proc., 14[1-2] 321-32, 1993.

10.N. Hirosaki, Y. Akimune and M. Mitomo, “Effect of Grain Growth of β- Silicon Nitride on Strength, Weibull Modulus, and Fracture Toughness”, J. Am. Ceram. Soc., 76[7]1892-94, 1993.

11.J.L. Huang, L.M. Din, H.H. Lu and W.H. Chan, “Effect of Two-Step Sintering on the Microstructure of Si3N4”, Ceram. Inter., 22, 131-6, 1996.

12.J. Hoffmann, MRS Bull. Feb. (1995) 28.

13.M.J. Hoffmann, in “Tailoring of Mechanical Properties of Si3N4 Ceramics”, ed. by M.J. Hoffmann and G. Petzow, (NATO ASI Series, Kluwer Academic Publishers, Dordrecht), 276(1994) 233.

14.T. Nishimura, M. Mitomo and H. Suematsu, “High temperature strength of silicon nitride ceramics with ytterbium silicon oxynitride” J. Mater. Res. 12[1] 203-209 (1997).

15.M.K. Cinibulk, G. Thomas and S.M. Johnson, “Grain-boundary-phase crystallization and strength of silicon nitride sintered with a YSiAlON glass”, J. Am. Ceram. Soc. 73[6] 1606-12 (1990).

16.M.K. Cinibulk, G. Thomas and S.M. Johnson, J. Am. Ceram. Soc., 75[8] 2037 (1992).

17.M.J. Hoffmann and G. Petzow, Pure and Appl. Chem., 66[9] 1807 (1994).

18.J.S. Vetrano. H.-J. Kleebe, E. Hampp, M.J. Hoffmann, M. Rühle and R.M. Cannon,” Yb2O3-fluxed sintered silicon nitride”, J. Mat. Sci., 28, 3529 -38(1993).

19.C.-M. Wang X. Pan, M.J. Hoffmann, R.M. Cannon and M. Rühle, “Grain boundary films in rare-earth-glass based silicon nitride”, J. Am. Ceram. Soc., 79[3](1996) 788-92.

20.Robet E. Reed –Hill, Physical Metallurgy Principles, 2nd edition, Chap.19.

21.R.O. Ritchie and R.H. Dauskardt, “Cyclic Fatigue of Ceramics: A Fracture Mechanics Approach to Subcritical Crack Growth and Life Prediction”, J. Am. Ceram. Soc., 99[10] 1047-62, 1991.

22.F. Guju, M.J. Reece and D.A.J. Vaughan, “Cyclic Fatigue of Ceramics”, J. Mater. Sci., 26,3275-86, 1991.

23.S. Horibe and R. Hirahara, “Cyclic Fatigue of Ceramics Materials: Influence of Crack Path and Fatigue Mechanisms”, Acta Metall. Mater., 39[6]1309-17, 1991.

24.J.E. Ritter and J.N. Humenik, ”Static and Dynamic Fatigue of Polycrystalline Alumina”, J. Mater. Sci., 14, 626-32, 1979.

25.M. Wang, M. Li, A. J. Bushby, “High-temperature Fatigue of a Gas-Pressure-Sintered Silicon Nitride”, J. Euro. Ceram. Soc., 16, 1009-1020, 1996.

26.Sung R. Choi, “Effect of Preloading on Fatigue Strength in Dynamic Fatigue Testing of Ceramic Materials at Elevated Temperatures”, Ceram. Engin. Sci. Proce. (1995) p 87-94.

27.王世明, 國立成功大學材料科學及工程學研究所碩士論文, 1998, 6.

28.E.T. Turkdogan, P.M.Bills and V.A.Tiooett, “Silicon Nitrides:Some Physico- Chemical Properties”, J.Appl.Chem.,8,296-302(1958).

29.K.Matsuhiro and T.Takajashi, “Physical Properties of Sintered Silicon Nitride Controlled by Grain Boundary Chemistry and Microstructure Morphology”, p 11-5, in Proceeding of the MRS International Meeting on Advanced Materials, Edited by M.Doyama etal., Material Research Society, Pittsburg, PA, 1989.

30.D.Hardie, and K.H.Jack, “Crystal Structures of Silicon Nitride”, Nature, 180, 332-33(1957).

31.K.H.Jack, “The Role of Additive in the Densification of Nitrogen Ceramics”,p.3-14, in Final Technical Report, DAERO-78-G-012, European Research Office, U.S. Army, London, England, 1978.

32.G.R.Terwillinger, and F.F.Lange, “Pressureless Sintering of Si3N4 “, J.Mat.Sci., 10, 1169-73(1995).

33.R.Grun, “The Crystal Structure of β-Si3N4 ; Structural and Stability Considerations Between α- and β- Si3N4”, Acta Cryst., B35, 800-804(1979).

34.M.Peuckert, and P.Greil, “Oxygen Distribution in Silicon Nitride Powder”, J.Mat.Sci., 22, 3717-20(1975).

35.J.Weiss, ”Silicon Nitride : Composition, Fabrication Parameters, and Properties”, Ann. Rev. Mater. Sci., 11, 381-99(1981).

36.D.R.Messier, F.L.Riley, and R.J.Brook, “The α / β Phase Transformation”, J.Mat.Sci., 13, 1199-1205(1978).

37.V.K.Sarin, “On the α- to β- Phase Transformation in Silicon Nitride”, Mat.Sci. and Eng.,A105/106, 151-158(1988).

38.L.J.Bowen, R.J.Weston, T.G.Carthruthers, and R.J.Brook, “Hot-Pressing and the α-β Phase Transformation in Silicon Nitride”, J.Mat.Sci., 13,341-350(1978).

39.H.F.Priest, F.C.Burns, G.F.Priest, and E.C.Skaar, “Oxygen Content of Alpha Slicon Nitride”, J.Am.Ceram.Soc.,56[7]395(1973).

40.L.J.Bowen, T.G.Carthruthers, and R.J.Brook, “Hot-Pressing of Si3N4 with Y2O3 and LiO2 as Additives”, J.Am.Ceram.Soc., 61[7-8]335-339(1978).

41.K.Kijama, and S.Shirasaki, “Nitrogen Self Diffusion in Silicon Nitride”,J. Chem. Phys.,n65,2668-71(1976).

42.G.C. Deeley, J.M. Herbert, N.C. Moore, “Dense Silicon Nitride”, Powder Metall., 8, 145(1961).

43.K.Negita, “Effective Sintering Aids for Si3N4 Ceramics”, J.Mat.Sci.Letter, v4, 755-758(1985).

44.G.Wotting, B.Kanka, and G.Ziegler, “Microstructural Development, Microstructural Characterization and Relation to Mechanical Properties of Dense Silicon Nitride”, pp.83-96 in Non-Oxide Technique and Engineering Ceramics, Edited by S.Hamphire. Elsevier Applied Science, London, 1986.

45.J.R.Kim, and C.H.Kim, J.mat.Sci., 25, 493(1990).

46.D.R. Clarke and G. Thomas, J. Am. Ceram. Soc., 61(1978) 114.

47.R. Raj, in “Tailoring of Mechanical Properties of Si3N4 Ceramics”, ed. by M.J. Hoffmann and G. Petzow, (NATO ASI Series, Kluwer Academic Publishers, Dordrecht), 276(1994) 201.

48.H.-J. Kleebe, M.J. Hoffmann and M. Rühle, Z. Metallkd.,” Influence of secondary phase chemistry on grain boundary film thickness in silicon nitride”, Zeitschrift fuer Metallkunde, 83[8](1992)610-617.

49.D.R. Clarke, ”On the equilibrium thickness of intergranular glass phases in ceramic materials”, J. Am. Ceram. Soc., 70[1](1987) 15-22.

50.H.G. Bossemeyer and P. Greil, in “Silicon Nitride 93”, ed. by M.J.Hoffmann, P.F.Becher, and G.Petzow,(Trans Tech Publications, Switzerland), Key Eng. Mater. 89-91(1994) 357.

51.K.T.Faber, and A.G.Evans, “Crack Deflection Processes-I. Theory”,Acta Metall., 31[4]577-584 (1983)

52.K.T.Faber, and A.G.Evans, “Crack Deflection Processes-II. Experiment”,Acta Metall., 31[4]565-576(1983).

53.P.F.Becher, C-H Hsueh, P. Angelini, and T.N.Tuegs, “ Toughening Behavior in Wishker-Reinforced Ceramic Matrix Composittes”, J.Am.Ceram.Soc., 71[12]1050-61(1988).

54.David Broek, “Elementary Engineering Fracture Mechanics”, Fourth revised edition, 1986, p.150-155.

55.S.M.Wiederhorn and L.H.Bolz,”Stress Corrosion and Static Fatigue of Glass,”ibid.,53[10]543-48(1970).

56.A.G.Evans,”Slow Crack Growth in Brittle Materials under Dynamic loading conditions,”Int. J. Frac., 10[2]251-59(1974).

57.R.F.Krause, Jr., “Rising fracture toughness from the bending strength of indented alumina beams”, J. Am. Ceram. Soc., 71[5] 338-43 (1988).

58.“Standard Definitions of Terms Relating to Fatigue Testing and Statistical Analysis of Data”, ASTM Designation E206-84, Vol.03.01, p. 342(1984).

59.J.E.Ritter, “Engineering Design and Fatigue of Brittle Materials”, Fracture Mechanical of Ceramics, vol.4, pp.667-686.

60.P.H. Conley, H.C.Chandan, and R.C. Bradt, ” Dynamic Fatigue of Foamed Glass”, Fracture Mechanics of Ceramics, Vol.4, pp.761-772.

61.B.R. Lawn, D.B.Marshall, G.R. Anstis, and T.P.Dabbs, “Fatigue Analysis of Brittle materials using Indentation Flaws-Part1 Genegal theory,” J. Mater. Sci.,16[10-12]2846-54(1981).

62.R.R. Cook, B.R. Lawn, D.B.Marshall, and G.R. Anstis, “Fatigue Analysis of Brittle materials using Indentation Flaws-Part2 Case Study on Glass-Ceramic,” ibid.,17[3-4]1108-16(1982).

63.D.B.Marshall and B.R. Lawn, “Flaw Characteristics in Dynamic Fatigue: The Influence of Residual Contact Stresses,”ibid.,64[6]322-25(1981).

64.E.Tani, S.Umebayshi, K.Kishi, K.Kobayashi, and N.Nishijima, Am. Ceram. Soc. Bull., 65, 1311 (1986).

65.K.H.Jack, “The Role of Additive in the Densification of Nitrogen Ceramics”, p.3-14,, in Final Technical Report, DAERO-78-G-012, European Research Office, U.S. Army, London, England, 1978.

66.盧鴻華,”氮化矽陶瓷材料的微結構及機械性質研究”,成功大學博士論文,90年6月.

67.S.R. Choi, and J.A. Salem, “Dynamic, Static and Cyclic Fatigue of Alumina with Indentation-Induced Flaws”, J.Mat.Sci.Lett., 14, 1286-1288(1995).

68.A.A. Wereszczak, K. Breder, “Role of Oxidation in the Time-Dependent Failure Behavior of Hot Isostatically Pressed Silicon Nitride at 1370℃”, J.Am.Ceram.Soc., 76[11] 2919-22(1993).

69.A.A. Wereszczak, T.P. Kirkland, K. Breder, “High temperature dynamic fatigue performance of a hot isostatically pressed silicon nitride”, Materials Science and Engineering A191, 257-266(1995).

70.S.R. Choi, and P. John, “Preloading technique as a tool to indentify failure mechanisms in constant stress-rate testing of advanced ceramics at elevated temperatures”, Ceramic Engineering and Scinece Proceedings, 32, 91-99(2000).

71.Jan Dusza, Pavol Sajgakik, Marc Steen, “Dynamic fatigue of a Si3N4+SiC nanocomposite at 1350℃”, Materials Science and Engineering A291, 250-255(2000).

72.周玉,”陶瓷材料學”, p.230-231, 中央圖書出版社.

73.M. Wang, M. Li, A.J. Bushby, “High-temperature Fatigue of a Gas-Pressure-Sintered Silicon Nitride”, J. Europ. Ceram. Soc., 16, 1009-1020(1996).

74.A. Tsuge, K. Nishida and M. Komatsu, “Effect of Crystallizing the grain-boundary glass phase on the high-temperature strength of hot-pressed Si3N4 containing Y2O3.”, J. Am. Ceram. Soc. 58[7-8] 323(1975).

75.M.J. Hoffmann, “Relationship Between Microstructure and Mechanical Properties of Silicon Nitride Ceramics”, Pure Appl. Chem., 67[6]939-46(1995).

76.G.B. Granger, J. Crampon, R. Duclos and B. Cales, “Glassy Grain-Boundary Phase Crystallization of Silicon Nitride: Kinetics and Phase Development”, J. Mater. Sci., 14, 1362-5(1995).

77.H.-J. Kleebe, “Structure and Chemistry of Interfaces in Si3N4 Ceramics Studied by Transmission Electron Microscopy”, J. Ceram. Soc. Jap., Int. Ed., vol105-490(1997).

78.C. -K.J. Lin, M.G. Jenkins, M.K. Ferber, “Evaluation of tensile static, dynamic and cyclic fatigue behavior for a HIPed silicon nitride at elevated temperature”, Silicon Nitride Ceramics, Vol.287, Materials Research Society, 455-460(1993_.

79.P.K. Khandelwal, J. Chang, “Slow crack growth in sintered silicon nitride”, Fracture Mechanics of Ceramics, vol.8,351-362(1986).

80.J. Chang, P.K. Khandelwal, “Dynamic and static fatigue behavior of sintered silicon nitrides”, Ceram. Eng. Sci. Proc., 8(7-8)766-777(1987).

81.Y.G. Gogotsi, G.Grathwohl, ”Stress-enhanced oxidation of silicon nitride ceramics”, J.Am.Ceram.Soc., 73(12), 3093-3104(1993).

82.D.R. Clarke, F.F. Lange, “Strengthening of a sintered silicon nitride by a post-fabrication heat treatment”, J.Am.Ceram.Soc.,65,C51-C52(1982).

83.D.R. Clarke, “A comparison of reducing and oxidizing heat treatment, J.Am.Ceram.Soc., 66, 92-95(1983).

84.S. Hampshire, R.A.L. Drew, “Viscosities glass transition temperature, and microhardness of Y-Si-Al-O-N glasses, Commun. Am. Ceram. Soc.,67, C46-C47 (1984).

85.吳朗, 唐敏注, “陶瓷材料的物理和化學特性及檢測”, 陶瓷技術手冊(上),p262.

86.黃肇瑞, “氮化物”, 陶瓷技術手冊(下), p791.

87.Y.H. Zhang, L. Edwards, ”Cyclic fatigue crack growth behaviour of silicon nitride at 1400℃”, Mat. Sci. Eng. A256, 144-151 (1998).

88.紀志明, 國立成功大學材料科學及工程學研究所碩士論文, 1993, 6.

89.K. Zeng, K.Breder, “Dynamic Fatigue of an Al2O3/SiCWisker Composition Water”, Ceram. Eng. Sci. Proc. 12[9-10] pp.2233-50 (1991).

90.H.N. Ko, “Fatigue Strength of Sintered Si3N4 under rotary bending”, ibid., 6,175-177 (1987).

91.J.L. Huang, J.M. Jih, “Investigation of SiC-AlN: PartIII. Static and dynamic fatigue”, J. Mater. Res., 10, 2488-93 (1995).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔