跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 04:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建志
研究生(外文):Chien-Chih Lin
論文名稱:電漿化學氣相沉積成長方向性奈米碳纖維(管)之研究
論文名稱(外文):Growth of Aligned Carbon Nanofibers and Nanotubes by Plasma Enhanced Chemical Vapor Deposition
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hsiung Hon
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:90
語文別:中文
論文頁數:95
中文關鍵詞:電漿化學氣相沉積奈米碳纖維管順向成長場發射
外文關鍵詞:field emissionalignmentplasma enhanced chemical vapor depositioncarbon nanofibers and nanotubes
相關次數:
  • 被引用被引用:8
  • 點閱點閱:604
  • 評分評分:
  • 下載下載:175
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用電漿化學氣相沉積法,以甲烷、乙炔等碳氫化合物為碳源、鎳金屬為催化劑,於低溫度製程下成長奈米碳纖維(管),藉改變不同鎳催化劑來源、鎳薄膜厚度、基板溫度、工作壓力及自偏壓的大小等實驗參數成長碳纖維(管)。以SEM、TEM、Raman、EDS分析奈米碳纖維(管)的成長特性,並對其方向性成長行為進行研究。

實驗結果顯示:無論使用鎳膜、硝酸鎳或鎳箔塊材均可合成出一維碳材料。由拉曼光譜及高解析TEM分析顯示,在低溫製程下,此碳材料具石墨結晶。濺鍍鎳金屬薄膜於550℃、氫氣電漿環境下,薄膜未能維持平面完整性,反而進行分裂、凝縮,形成均勻分佈之奈米尺寸鎳顆粒,提供碳纖維成長所需之觸媒,經氣相成長可得垂直基板排列之順向奈米碳纖維碳管。隨鎳催化劑薄膜的厚度遞減,纖維狀碳材料的成長密度愈高,直徑分佈愈為集中,2nm厚度鎳膜成長之碳纖維管成長密度可達1010/cm2。基板溫度於565℃至600℃間,為較佳之順向成長溫度範圍。經TEM觀察,一維奈米碳材料微結構包含carbon filament、carbon tubule、carbon nanofiber、bamboo-shaped CNT,微結構上的差異主要來自不同溫度下催化劑尺寸大小與形狀的影響,造成石墨層排列方式不同。就場發射而言,本研究所合成之順向奈米碳纖維(管)之起始電場為2.5V/um,當外加電場為5 V/um時,電流密度可達1mA/cm2。

此外,在電漿鞘層寬度範圍內改變基材與電極間相對夾角,可調整基材表面局部電場的方向,藉此獲得不同成長方向的奈米碳纖維(管),甚至可於成長過程中控制奈米碳纖維(管)的成長方向,形成彎折型態的碳纖維(管)。
In this research, carbon nanofibers or carbon nanotubes(CNFs/CNTs) have been synthesized from hydrocarbon by plasma-enhanced chemical vapor deposition with Ni as catalyst at low temperature. The effect of experimental parameters on the growth characteristics of CNFs/CNTs was evaluated with SEM, TEM, Raman, and EDS. Besides, the alignment behavior of CNFs/CNTs in the plasma environmental was also studied.

Experimental results show that one-dimensional carbon material can be prepared successfully regardless of the catalyst sources, such as sputtering Ni thin film, nickel nitrate solution, and Ni foil. It can be confirmed that this carbon material obtained from low temperature process contains graphite crystallization by Raman and HRTEM analyses. The sputtering Ni film can agglomerated into uniformly distributed nanometer-sized particles which can be employed to assist the growth of CNFs/CNTs during the process of catalyst pretreatment. With proper pretreatment and parameter selection, the preparation of large area, uniformly distributed, and vertically aligned CNFs/CNTs can be performed. Moreover, the thickness of nickel coatings shows a great impact on the growth characteristics of CNFs/CNTs. With decreasing Ni coating thickness, the nucleation density increases and the diameter distribution becomes more concentrated. The optimized substrate temperature for well-aligned CNFs/CNTs in this research is around 565℃ to 600℃. It is found that with the increasing of RF plasma self-bias, the growth density of CNFs/CNTs demonstrates a decreasing trend and the morphology of them changes to cone structure apparently due to plasma etching. From the TEM observation, as the result of the difference in catalyst size and shape at different growth temperatures, one-dimensional nanometer-sized carbon materials with various microstructures including carbon filaments, carbon tubules, carbon nanofibers, and bamboo-shaped carbon nanotubes were obtained. The turn-on field for field emission of well-aligned CNFs/CNTs was 2.5 V/um and the emission current density could reach 1mA/cm2 at 5V/um.

In addition, different orientations of CNFs/CNTs with respect to substrate were performed by changing the angle of substrate surface to electrode in the plasma sheath. The growth direction of CNFs/CNTs depends on the local electric field direction imposed on the substrate surface. The kinked carbon nanostructure can be synthesized via controlling the growth direction of CNFs/CNTs.
中文摘要 Ⅰ
英文摘要 Ⅱ
總目錄 Ⅳ
圖目錄 Ⅶ
表目錄 XI

第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4

第二章 理論基礎與文獻回顧 6
2-1 奈米碳纖維(管)結構與特性 6
2-2 電漿化學氣相沉積 9
2-2-1 基礎原理 9
2-2-2 電漿鞘層的形成 10
2-2-3 射頻電漿系統 11
2-3 順向成長原理與方法 13
2-3-1 纖維間凡得瓦力 13
2-3-2 模板輔助成長 13
2-3-3 電場 14
2-4 奈米碳纖維(管)氣相成長機構 16
2-4-1 碳原子的擴散路徑 16
2-4-2 催化劑中碳原子的擴散驅動力 18
2-4-3 成長起源:頂部成長模式及底部成長模式 18

2-5 奈米碳纖維(管)相關研究與發展 23
2-5-1 最小直徑的奈米碳管 23
2-5-2 毫米級長度的奈米碳管 23
2-5-3 奈米級電化學電極 24
2-5-4 製程技術的發展 24
2-6 電子場發射特性 26

第三章 實驗方法與步驟 27
3-1 實驗流程 27
3-2 PECVD系統設備 28
3-3 實驗材料選擇 30
3-3-1 反應氣體 30
3-3-2 基板材料 30
3-3-3 催化劑 30
3-4 實驗步驟 30
3-4-1 基板與催化劑的製備 30
3-4-2 奈米碳纖維(管)的成長 31
3-5 奈米碳纖維管的分析與鑑定 32

第四章 奈米碳纖維(管)成長特性 33
4-1 RF-PECVD系統成長奈米碳纖維(管)結構鑑定 33
4-2 催化劑的選擇 38
4-3 鎳膜分裂觀察 40
4-4 鎳膜厚度對成長特性的影響 42
4-5 基板溫度效應 44
4-6 氣體工作壓力的效應 44
4-7 自偏壓大小的影響 52
4-8 觸媒型態與奈米碳纖維(管)微結構 56
4-9 場發射性質測試 63

第五章 奈米碳纖維管方向性成長行為 67
5-1 電漿鞘層電場對成長方向的影響 67
5-3 氣體流場對成長方向的影響 78

第六章 結論 86

參考文獻 88
1 T. W. Ebbesen, Carbon Nanotube-Preparation and Properties, CRC Press, New York, (1997), p.37.
2 S. Iijima,“Helical microtubules of graphitic carbon,”Nature, 354 (1991) 56.
3 D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Saroy, J. Vazquez, and R. Beyers.“Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls,”Nature, 363 (1993) 605.
4 M. J. Yacaman, M. M. Yoshida, L. Rendon, and J. G. Santiesteban,“Catalytic growth of carbon microtubules with fullerene structure,”Appl. Phys. Lett., 62 (1993) 202.
5 M. Endo, K. Takeuchi, K. Takahashi, H. W. Kroto, and A. Sarkar,“Pyrolytic carbon nanotubes from vapor-grown carbon fibers,”Appl. Phys. Lett. 33[7] (1995) 873.
6 S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,”Nature, 386 (1997) 474.
7 Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim,“Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enchanced chemical vapor deposition,”Appl. Phys. Lett., 76 (2000) 2367.
8 Y. C. Choi, Y. M. Shin, S. C. Lim, D. J. Bae, Y. H.. Lee, and D. C. Chung,“Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition,”J. Appl. Phys., 88 (2000) 4898.
9 Z. F. Ren, Z. P. Huang, D. Z. Wang, J. G. Wen, J. W. Xu, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed,“Growth of a single freestanding multiwall carbon nanotube on each nickel dot,”Appl. Phys. Lett., 75 (1999) 1086.
10 V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, G. Eres, E. Voelkl,“Patterned growth of individual and multiple vertical aligned carbon nanotubes,”Appl. Phys. Lett., 76 (2000) 3555.
11 Harris, J. F. Peter, Carbon nanotubes and related structures: new materials for the twenty-first century, Cambridge University Press, (1999), p.115.
12 S. Frank, P. Poncharal, Z. L. Wang, Walt A. de Heer,“Carbon nanotube quantum resistors,”Science, 280 (1998) 1744.
13 H. Dai,“Carbon nanotubes: opportunities and challenges,”Surface Science, 500 (2002) 218.
14 B. Chapman, Glow Discharge Processes (Wiley, New York, 1980), p.52.
15 H. R. Koenig, and L. I. Maissel,“Application of RF discharge to sputtering,” J. Res. Develop, 14 (1970) 168.
16 J. I. Sohn, S. Lee, Y. H. Song, S. Y. Choi, K. L. Cho, and K. S. Nam,“Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays,”Appl. Phys. Lett., 78 (2001) 901.
17 C. J. Lee, and J. Park,“Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition,”Appl. Phys. Lett., 77 (2000) 3397.
18 G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son, and D. J. Kim,“Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition,”J. Appl. Phys., 91 (2002) 3847.
19 D. C. Li, L. Dai, S. Huang, A. W. H. Mac, and Z. L. Wang,“Structure and growth of aligned carbon nanotube films by pyrolysis,”Chem. Phys. Lett., 316 (2000) 349.
20 J. C. Hulteen, and C. R. Martin,“A general template-based method for the preparation of nanomaterials,”J. Mater. Chem., 7(7) (1997) 1075.
21 J. S. Suh, and J. S. Lee,“Highly ordered two-dimensional carbon nanotube arrays,”Appl. Phys. Lett., 75 (1999) 2047.
22 Z. H. Yuan, H. Huang, H. Y. Dang, J. E. Cao, B. H. Hu, and S. S. Fan,“Field emission property of highly ordered monodispersed carbon nanotube arrays,”Appl. Phys. Lett., 78 (2001) 3127.
23 X. Y. Zhang, L. D. Zhang, M. J. Zheng, G. H. Li, and L. X. Zhao,“Template synthesis of high-density carbon nanotube arrays,”Journal of Crystal Growth, 223 (2001) 306.
24 E. J. Bae, W. B. Choi, K. S. Jeong, J. U. Chu, G. S. Park, S. Song, and I. K. Yoo,“Selective growth of carbon nanotubes on pre-patterned porous anodic aluminum oxide,”Adv. Mater. 14 (2002) 277.
25 G. Zheng, H. Zhu, Q. Luo, Y. Zhou, and D. Zhao,“Chemical vapor deposition of well-aligned carbon nanotube patterns on cubic mesoporous silica films by soft lithography,”Chem. Mater., 13[12] (2001) 4416 .
26 S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai,“Self-oriented regular arrays of carbon nanotubes and their field emission properties,”Science, 283 (1999) 512.
27 N. Wang, Z. K. Tang, G. D. Li, J. S. Chen,“Single-walled 4Å carbon nanotube arrays,”Nature, 408 (2000) 50.
28 Y. C. Sui, D. R. Acosta, J. A. Gonzalez-Leon, A. Bermudez, J. Feuchtwanger, B. Z. Chi, J. O. Flores, and J. M. Saniger,“Structure, thermal, stability, and deformation of multibranched carbon nanotubes synthesized by CVD in the AAO template,”J. Phys. Chem. B, 105[8] (2000) 1523.
29 G. Che, B. B. Lakshmi, C. R. Martin, and E. R. Fisher,“Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method,”Chem. Mater, 10 (1998) 260.
30 C. Bower, W. Zhu, S. Jin, and O. Zhou,“Plasma-induced alignment of carbon nanotubes,”Appl. Phys. Lett., 77 (2000) 830.
31 Y. Avigal and R. Kalish,“Growth of aligned carbon nanotubes by biasing during growth,”Appl. Phys. Lett., 78 (2001) 2291.
32 Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenlimez, J. Kong, and H. Dai“Electric-field-directed growth of aligned single-walled carbon nanotubes,”Appl. Phys. Lett., 79 (2001) 3155.
33 Y. H. Wang, J. Lin, C. H. A. Huan, and G. S. Chen,“Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition,”Appl. Phys. Letts., 79 (2001) 680.
34 M. Tanemura, K. lwata, K. Takahashi, Y. Fujimoto, F. Okuyama, H. Sugie, and V. Filip,“Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition : Optimization of growth parameters,”J. Appl. Phys., 90 (2001) 1529.
35 V. I. Merkulov, A. V. Melechko, M.l A. Guillorn, D. H. Lowndes, and Michael L. Simpson,“Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition,”Appl. Phys. Lett., 79 (2001) 2970.
36 Y. Chen, D. T. Shaw, and L. Guo,“Field emission of different oriented carbon nanotubes,”Appl. Phys. Lett., 76 (2000) 2469.
37 R. T. K. Baker, P. S. Harris, R. B. Thomas, R. J. Waite,“Formation of filamentous carbon from iron, cobalt, and chromium catalyzed decomposition of acetylene,”J. Catal., 30 (1973) 86.
38 A. Oberlin, M. Endo, T. Koyama,“High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition,”Jap. J. Appl. Phys., 16[9] (1997) 1519.
39 R. T. K. Barker, J. R. Alonzo, and J. A. Dumesic,“Effect of the surface state of iron on filamentous carbon formation,”J. Catal., 771 (1982) 74.
40 W. L. Holstein, and M. Boudart,“The temperature difference between a supported catalyst particle and its support during exothermic and endothermic catalytic reaction,”Rev. Latinoam Ing. Quim. Quim. Apl., 132 (1983) 107.
41 O. A. Louchev, Y. Sato, and H. Kanda,“Growth mechanism of carbon nanotube forests by chemical vapor deposition,”Appl. Phys. Lett., 80 (2002) 2752.
42 R. T. K. Baker,“Catalytic growth of carbon filaments,”27(3) (1989) 315.
43 A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and M. L. Simpson,“Transition between base and tip carbon nanofiber growth modes,”Chem. Phys. Lett., 356 (2002) 527.
44 L. C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima,“The smallest carbon nanotube,”Nature, 408 (2000) 50.
45 H. Y. Peng, N. Wang, Y. F. Zheng, and Y. Lifsitz, J. Kulik, R. Q. Zhang, C. S. Lee, and S. T. Lee,“Smallest diameter carbon nanotubes,”Appl. Phys. Lett., 77 (2000) 2831.
46 S. S. Xie, W. Z. Li, Z. W. Pan, B. H. Chang, and L. F. Sun,“Carbon nanotube arrays,”The European Physical Journal D, 9 (1999) 85.
47 M. A. Guillorn, T. E. Mcknight, A. Melechko, V. I. Merkulov, P. F. Britt, D. W. Austin, D. H. Lowndes, and M. L. Simpson,“Individually addressable vertically aligned carbon nanofiber-based electrochemical probes,”J. Appl. Phys., 91 (2002) 3824.
48 L. Yuan, K. Saito, W. Hu, and Z. Chen,“Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes,”Chem. Phys. Lett.,346 (2000) 23.
49 J. Wan, Y. H. Luo, Sung D. Choi, R. G. Li, G. Jin, J. L. Liu., and K. L. Wang,“Growth of carbon nanotubes by gas source molecular beam epitaxy,”J. Appl. Phys., 89 (2001) 1973.
50 T. S. Wong , C. T. Wang , K. H. Chen , L. C. Chen , K. J. Ma, T. S. Wong, C. T. Wang, K. H. Chen, L. C. Chen, and K. J. Ma,“Carbon nanotube growth by rapid thermal processing,” Diamond and related materials., 10(9-10) (2001) 1810.
51 K. Yamamoto , Y. Koga , S. Fujiwara , and M. Kubota,“New method of carbon nanotube growth by ion beam irradiation,”Appl. Phys. Letts., 69 (1996) 4174.
52 Y. Jiang, Y. Wu, S. Zhang, C. Xu, W. Yu, Y. Xie, and Y. Qian,“A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature,”J. Am. Chem. Soc., 122 (2000) 12383.
53 A. T. Matveev, D. Golberg, V. P. Novikov, L. L. Klimkovich, and Y. Bando,“Synthesis of carbon nanotubes below room temperature,”Carbon, 39 (2001) 137.
54 R. H. Fowler, L. W. Nordfeim, Proceedings of of the Royal Society of London-A 119 (1928) 173.
55 H. S. Kang, H. J. Yoon, J. P. Hong, I. T. Han, S. N. Cha, B. K. Song, J. E. Jung, N. S. Lee, J. M. Kim,“Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system , ”Chem. Phys. Lett., 349 (2001) 196.
56 A. P. Burden, and S. R. P. Silva,“Fullerene and nanotube formation in cool terrestrial ”dusty plasmas” ,”Appl. Phys. Lett., 73 (1998) 3082.
57 G. W. Ho, A.T.S. Wee, J. Lin, W. C. Tjiu,“Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition ,”Thin Solid film, 388 (2001) 73.
58 S. J. Chung, S. H. Lim, C. H. Lee, J. Jang,“Novel plasma chemical vapor deposition method of carbon nanotubes at low temperature for field emission display application, ”Diamond and related Materials, 10 (2001) 248.
59 H. S. Kang, H. J. Yoon, J. P. Hong, I. T. Han, S. N. Cha, B. K. Song, J. E. Jung, N. S. Lee, J. M. Kim,“Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system , ”Chem. Phys. Lett., 349 (2001) 196.
60 A. P. Burden, and S. R. P. Silva,“Fullerene and nanotube formation in cool terrestrial ”dusty plasmas” ,”Appl. Phys. Lett., 73 (1998) 3082.
61 M. A. A. Elmasry, A. Gaber, and E. M. H. Khater,“Thermal decomposition of Ni(Ⅱ) and Fe(Ⅲ) nitrates and their mixture,”Journal of Thermal Analysis, 56 (1998) 489.
62 J. H. Han, H. J. Kim, M. H. Yang, C.W. Yang, J.B. Yoo, C.Y. Park, Y. H. Song, and K. S. Nam ,“Effects of thickness of Ni layer deposited on glass substrate on the growth and emission properties of carbon nanotubes,”Materials Science and engineering c-biomimetic and supramolecular systems, 16(1-2) (2001) 65.
63 Y. Y. Wei, Gyula Eres, V. I. Merkulov, and D. H. Lowndes,“Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,”Appl. Phys. Lett, 78 (2001) 1394.
64 S. Motojima, M. Kawaguchi, K. Nozaki, H. Iwanaga,“Growth of regularly coiled carbon filaments by Ni catalyzed pyrolysis of acetylene, and their morphology and extension characteristics,”Appl. Phys. Lett., 56 (1990) 321.
65 Y. Hayashii, T. Negishi, and S. Nishino,“Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted dc plasma chemical vapor deposition,”J. Vac. Sci. Technol. A, 194 (2001) 1796.
66 M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrari, D. Roy, J. Robertson, and W. I. Milne,“Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,”J. Appl. Phys., 90 (2001) 5308.
67 R. T. K. Baker, M. A. Baker, P. S. Harries, F. S. Feates, R. J. Waite,“Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” Journal of catalysis, 26 (1972) 51.
68 M. H. Kuang, Z. L. Wang, X. D. Bai, J. D. Guo, and E. G. Wang,“Catalytically active nickel {110} surfaces in growth of carbon tubular structures,”Appl. Phys. Lett., 76 (2000)1255.
69 J. Han, J. B. Yoo, C. Y. Park, H. J. Kim, G. S. Park, M. Yang, I. T. Han, N. Lee, W. Yi, S. G. Yu, and J. M. Kim,“Tip growth model of carbon tubules grown on the glass substrate by plasma enhanced chemical vapor deposition,”Appl. Phys. Lett., 91 (2002) 483.
70 V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, and G. Eres,“Patterned growth of individual and multiple vertically aligned carbon nanofibers,”Appl. Phys. Lett., 76 (2000) 3555.
71 Y. Chen, L. P. Guo, D. J. Johnson, and R. H. Prince,“Plasma-induced low-temperature growth of graphitic nanofibers on nickel substrates,”Journal of Crystal Growth, 193 (1998) 342.
72 P. E. Anderson and N. M. Rodriguez,“Growth of graphitic nanofibers from the decomposition of CO/H2 over silica-supported iron-nickel particles,”J. Mater. Res., 14(7) (1999) 2912.
73 Y. Y. Wei, Gyula Eres, V. I. Merkulov, and D. H. Lowndes ,“Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition,”Appl. Phys. Lett., 78 (2001)1396.
74 T. Katayama, H. Araki, and K. Yoshino,“Multiwalled carbon nanotubes with bamboo-like structure anf effects of heat treatment,”J. Appl. Phys , 91 (2002) 6675.
75 Y. J. Yoon, H. K. Baik,“Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition,”Diamond and Related Materials, 10 (2001) 1214.
76 T. Katayama, H. Araki, and K. Yoshino,“Multiwalled carbon nanotubes with bamboo-like structure and effects of heat treatment,”J. Appl. Phys , 91 (2002) 6675.
77 A. Srivastava, A. K. Srivastava, and O. N. Srivastava,“Effect of external electric field on the growth of nanotubules,”Appl. Phys. Lett., 72 (1998) 1685.
78 X. Q. Chen, T. Saito, H. Yamada, and K. Matsushige,“Aligning single-wall carbon nanotubes with an alternating-current electric field,”Appl. Phys. Lett., 78 (2001) 3714.
79 J. G. Wen, Z. P. Huang, D.Z. Wang, J. H. Chen, S.X. Yang, Z. F. Ren, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, and M. A. Reed,“Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films,”J. Mater. Res.,1610 (2001) 3246.
80 M. A. Lieberman and A. J. Lichtenberg, Principle of Plasma Discharges and Materials Processing (Wiley, New York, 1999), p.164.
81 M. Chhowalla, K. B. K. Teo,C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C. Ferrai, D. Roy, J.Robertson, and W. I. Milne,“Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,”J. Appl. Phys., 90 (2001) 5308.
82 J. Yu, X. D. Bai, J. Ahn, S. F. Yoon, and E. G. Wang,“Highly oriented rich boron B-C-N nanotubes by bias-assisted hot filament chemical vapor deposition,”Chem. Phys. Lett., 323 (2000) 529.
83 J. Yu, Q. Zhang, J.Ahn, S.F. Yoon, Rusli, B. Gan, K. Chew, K. H.. Tan, X. D. Bai, and E. G. Wang,“Growth and structure of aligned B-C-N nanotubes,”J. Vac. Sci. Technol. B, 193 (2001) 671.
84 J. Li, C. Papadopoulos, and J. Xu,“Nanoelectronics : Growing Y-junction carbon nanotube,”Nature, 402 (1999) 253.
85 B. C. Satishkumar, P. John Tohmas,A. Govindaraj, and C. N. R. Rao,“Y-junction carbon nanotubes,”Appl. Phys. Lett., 77 (2000) 2530.
86 J .M. Ting, and C. C. Chang,“Multijunction carbon nanotube network,”Appl. Phys. Lett., 80 (2002) 324.
87 R. F. Service,“Mixing nanotube structures to make a tiny switah,”Science, 271 (1996) 1232.
88 C. Y. Zhi, J. D. Guo, X. D. Bai, and E. G. Wang,“Adjustable boron carbonitride nanotubes,” J. Appl. Phys., 91 (2002) 5325.
89 楊佩玲,微波化學氣相沉積法成長奈米碳管之研究,國立清華大學材料科學與工程研究所碩士論文,2001,p.48。
90 Y. Chen, Z. L. Wang, J. S. Yin, D. J. Johnson, R. H. Prince, “Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition,”Chem. Phys Lett., 272 (1997) 178.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊