跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林殿傑
研究生(外文):Dan-Jae Lin
論文名稱:鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究
論文名稱(外文):Structure and Properties of Ti-Mo-Fe and Ti-Mo-Cr Alloys
指導教授:朱建平朱建平引用關係陳瑾惠
指導教授(外文):Chien-Ping JuJiin-Huey Chern Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:226
中文關鍵詞:鈦合金機械性質穿透式電子顯微鏡
外文關鍵詞:Titanium AlloysTEMMechanical Properties
相關次數:
  • 被引用被引用:31
  • 點閱點閱:801
  • 評分評分:
  • 下載下載:244
  • 收藏至我的研究室書目清單書目收藏:0
β鈦合金的開發是目前在金屬生醫植入材上重要的突破。本研究是以低彈性模數的Ti-7.5Mo二元合金系統為主幹,探討添加β穩定元素鐵(Fe)及鉻(Cr)對機械性質及微結構的影響。並且針對以β相為主要相的鈦合金深入研究其變形模式,探討微小析出的ω相所扮演的角色及雜質含量對變形行為的影響。
實驗結果發現Ti-7.5Mo合金鑄造後組織為麻田散體的斜方晶(orthorhombic)α〞相,彎曲強度及彎曲彈性模數比其他添加第三元素合金皆低。當添加鐵的含量大於1wt %時為等軸晶狀的立方晶(bcc)β相結構。並且晶粒大小隨著鐵含量的增加而減小。另外,會有非熱型的ω相(athermal ω)出現在鐵含量約0.5~3 wt%的範圍,當含鐵量大於3 wt%時ω相幾乎無法由XRD測得。由電子顯微鏡的觀察發現ω相的大小及數量隨著鐵含量的增加而漸漸減少。Ti-7.5Mo-1Fe合金中的ω相比起Ti-7.5Mo-3Fe合金中的ω相較接近理想的ω相(ideal ω)。並且,隨著鐵含量的增加ω相的繞射點會擴散散射(diffuse scattering),並而延著<112>方向形成streak。在機械性質方面,由於ω相伴隨著β相生成造成彎曲彈性模數增加,在Ti-7.5Mo-xFe合金系統中硬度值最高的1wt%鐵合金其ω相含量最多也因此造成彎曲及拉伸試驗時的脆化。Ti-7.5Mo-2Fe合金在Ti-7.5Mo-xFe合金系統中有最高的彎曲強度,隨著鐵的繼續增加(ω相漸減)彎曲強度下降。而添加鐵的固溶強化效果在5wt%鐵以上漸漸明顯。由拉伸破斷面上的觀察發現,Ti-7.5Mo-1Fe合金為脆性破斷且準劈裂(qusi- cleavage)面上有約為1.5 μm的韌窩(dimple),並在Ti-7.5Mo-1Fe合金彎曲試片破斷的邊緣可以發現許多{112}<111>雙晶。另外,拉伸強度及延性較高的Ti-7.5Mo-2Fe合金呈現延性的破斷面,破斷表面佈滿3~5 μm的韌窩及剪力撕裂(shear tear)的痕跡。因此認為Ti-7.5Mo-1Fe合金中大量的ω相顆粒限制差排的滑移造成較快的應力集中最後脆性破斷。Ti-7.5Mo-2Fe合金中ω相顆粒較少且細小,受力變形時以均勻的滑移變形為主,因此有較高的強度及較低的彈性模數,且延伸率較大破斷時為延性破斷。
改變微量雜質(氧、碳、氮)含量在Ti-7.5Mo-xFe合金系統中並不改變合金相組成,且對析出ω相含量的影響並不明顯。雜質含量較多的Ti-7.5Mo-xFe合金有較高的微硬度及彎曲強度。Grade Ⅳ的Ti-7.5Mo-2Fe合金(grade Ⅳ c.p. Ti 熔煉)在彎曲試驗中有最高的強度及接近Ti-7.5Mo合金的彈性回覆角。微量雜質(氧、碳、氮)含量較多的grade Ⅳ Ti-7.5Mo-2Fe合金僅有5~10%的冷軋延量,冷軋延時以滑移為主並且會產生應力引起的ω相。而間隙型原子含量較少的gradeⅠ及grade ⅡTi-7.5Mo-2Fe合金冷軋延時以變形雙晶為主,並且軋延量可達70%以上。由TEM證實純度較高的gradeⅠTi-7.5Mo-2Fe合金變形雙晶為{332}<113>變形雙晶。
Ti-7.5Mo-xCr合金(Grade Ⅳ)系統中,當添加1wt%鉻時主要是麻田散體的α〞相夾著小量的β相。當鉻的含量大於2wt %時全部形成等軸晶的β相結構。並且β相晶粒大小隨著鉻含量的增加而減小。而介穩的ω相約在含2~4wt%鉻的合金中形成。ω相含量最多的Ti-7.5Mo-2Cr合金有最大的微硬度值、彎曲強度及彈性模數,拉伸破斷面上有微小(約為3~5 μm)的韌窩,並在Ti-7.5Mo-2Cr合金拉伸試片破斷的邊緣可以發現雙晶。拉伸強度及延性較高的Ti-7.5Mo-4Cr合金呈現延性的破斷面,破斷表面佈滿10~20 μm的韌窩及剪力撕裂的痕跡。純度較高的Ti-7.5Mo-xCr合金受拉伸變形時以雙晶為主,且破斷表面佈滿10~20 μm的韌窩呈現延性的破斷面。拉伸時形成變形雙晶的活化能隨著雜質原子(氧、碳、氮)的降低而降低,隨著ω相的增加而增加。
因此建議在Ti-7.5Mo合金中添加適量的β相穩定元素鐵(2~5wt%)或鉻(4~6wt%)元素,可以形成加工性及熱處理性較佳的β相,並有效的提昇合金強度約40%,並且彈性模數可以控制比商用純鈦及鈦六鋁四釩還低,在人體環境中的抗腐蝕性質與商用純鈦及鈦六鋁四釩相近。
Abstract
The present work is a study of a series of Ti-(3~10)Mo-xFe、Ti-7.5Mo-xCr、Ti-7.5Mo-xZr alloys, with the focus on the effect of β-stablizer (include iron、chromium and zirconium) addition on the structure and mechanical properties of the alloys. The effect of ω phase and impurity(interstitial O, C, N)on the deformation behavior of Ti-7.5Mo-xFe and Ti-7.5Mo-xCr alloys will also be discussed.
Experimental results indicate that α″ phase-dominated binary Ti-7.5Mo alloy exhibited a fine, acicular martensitic structure. When 1 wt% or more iron was added, the entire alloy became equi-axed β phase structure with a grain size decreasing with increasing iron content. Athermal ω phase was formed in the alloys containing iron of roughly between 0.5 and 3wt%. The largest quantity of ω phase and highest microhardness were found in Ti-7.5Mo-1Fe alloy. The binary Ti-7.5Mo alloy had a lower microhardness, bending strength and modulus than all iron-containing alloys. The largest bending strength was found in Ti-7.5Mo-2Fe alloy.
Ti-7.5Mo-2Fe alloy exhibited a ductile type fracture surface covered with normal deformation dimples. The fracture surface of 1Fe alloy exhibited a terrace-like morphology with numerous micron-sized dimples. Throughout entire plastically deformed region of 1Fe alloy, {112}<111> twins were observed, but few twins formed in 2Fe alloy. It is suggested that the numerous, larger-sized ω particles in 1Fe alloy have effectively restricted the slip of dislocations, that largely limited plastic deformation capability of the alloy. The less and smaller ω particles could not do the same to 2Fe, that led to the observed ductile behavior.
The effect of impurity content in Ti-7.5Mo-xFe alloy did not markedly change in phase structure and ω particles content. Neverthless, Ti-7.5Mo-2Fe alloy comprised with more interstitial atoms (including mainly O, C, N) exhibited higher hardness and strength. The grade Ⅳ Ti-7.5Mo-2Fe alloy had a highest bending strength in Ti-7.5Mo-xFe system and a comparative elastic recovery angle as compare to Ti-7.5Mo alloy. The impurity content also led a brittle effect on cold rolling due to the change in deformation modes from twin to slip. The grade Ⅳ Ti-7.5Mo-2Fe alloy which revealed slip trace on deformation surface broke down when strained approximate 5~10%, while the deformation twinning dominated gradeⅠand gradeⅡTi-7.5Mo-2Fe alloys had a thickness reducing over 70% as cold rolled at room temperature. The {332}<113>deformation twins were found by TEM in gradeⅠTi-7.5Mo-2Fe alloys.
In Ti-7.5Mo-xCr alloys system, as 1 wt% Cr is added, a small amount of β phase is retained. With 2 wt% or more chromium added, the entire alloy becomes equi-axed β phase with bcc crystal structure. The average β grain size decreases with Cr content. When the alloy contains about 2-4wt% Cr, a metastable ω phase is present. In Ti-7.5Mo-2Cr alloy appears the highest ω intensity accompanied with high microhardness, bending strength and modulus. The ω-induced embrittling effect is most profound in Ti-7.5Mo-2Cr alloy that exhibits a terrace type fracture surface covered with numerous micron-sized dimples. The alloys with higher Cr contents show normal ductile type fractography with much larger deformation dimples. With a higher purity, Ti-7.5Mo-xCr alloy exhibited a ductile type fracture surface covered with normal deformation dimples. The deformation product was dominated by twinning.
The present results indicate that high strength, low modulus Ti-7.5Mo-(2~5)Fe and Ti-7.5Mo-(4~6)Cr alloys seem to be potential candidates for implant application.
總目錄
中文摘要 1
Abstract 3
誌謝 5
總目錄 6
圖目錄 9
表目錄 15
第一章 緒論 17
1-1 研究背景 17
1-2 研究目的 19
第二章 簡介及文獻回顧 21
2-1 生醫材料簡介 21
2-1-1 生醫材料的分類 21
2-1-2 金屬生醫材料的發展 23
2-2 金屬生醫植入材機械性質的需求 24
2-2-1 磨屑造成的骨質溶解(osteolysis) 25
2-2-2 應力遮蔽效應(stress-shielding effect) 26
2-3 金屬植入材的生物相容性 28
2-3-1 金屬離子的細胞毒性 29
2-3-2 金屬植入物的耐腐蝕性質 32
2-4 生醫鈦合金 36
2-4-1 純鈦的性質及應用 38
2-4-2 α+β型合金的性質及應用 40
2-4-3 α〞鈦合金的性質及潛力 42
2-4-4 β鈦合金的性質及潛力 43
2-5 生醫鈦合金性質改善 49
2-5-1 加工熱處理 49
2-5-2 合金成分改變 49
2-5-3 表面處理 50
2-6 β鈦合金的合金設計理論 51
2-6-1 鉬當量方程式與電子數/原子數比值 51
2-6-2 電子結構的分子軌域計算(molecular orbital calculation of electronic structure) 53
2-6-3 分離式多樣化叢集方式(discrete variational cluster method, DVM) 53
2-7 β鈦合金的塑性變形理論 54
2-7-1 雙晶系統(twin system) 55
2-7-2 其他應力造成相變化產物 58
2-8 ω相的生成及影響 60
2-8-1 Athermal ω相 60
2-8-2 Isothermalω相 64
2-8-3 擴散的ω相(diffuseω) 65
2-8-4 ω相對β鈦合金機械性質的影響 66
第三章 添加鐵元素對Ti-7.5wt%Mo合金性質的影響 67
3-1 前言 67
3-2 材料及實驗方法 68
3-2-1 實驗流程 68
3-2-2 合金的溶煉、鑄造 68
3-2-3 試片的製備 71
3-2-4 合金成份分析 71
3-2-5 相結構分析 72
3-2-6 金相組織分析 75
3-2-7 電子顯微鏡分析 75
3-2-8 機械性質測試 76
3-2-9 腐蝕性質分析 77
3-3 結果與討論 81
3-3-1 成份分析 81
3-3-2 相結構分析 81
3-3-3 顯微組織分析 84
3-3-4 微硬度試驗 91
3-3-5 彎曲試驗 91
3-3-6 腐蝕性質分析 98
3-3-7 Ti-(3, 5, 10)Mo-(1, 2, 3)Fe合金性質分析 98
3-4 結論 101
第四章 ω相的穩定性及對Ti-7.5Mo-xFe合金機械性質及塑性變形機構的影響 106
4-1 前言 106
4-2 材料及實驗方法 106
4-2-1 實驗流程 106
4-2-2 成份分析 107
4-2-3 拉伸試驗 107
4-2-4 破斷面分析 110
4-2-5 變形模式分析 110
4-3 結果與討論 110
4-3-1 Ti-7.5Mo-xFe合金中的ω相析出 110
4-3-2 拉伸試驗 113
4-3-3 ω相對Ti-7.5Mo-xFe合金塑性變形機構的影響 117
4-4 結論 126
第五章 雜質含量對Ti-7.5Mo-xFe 合金的機械性質、軋延性質及變形模式的影響 127
5-1 前言 127
5-2 材料及實驗方法 127
5-2-1 實驗流程 127
5-2-2 成份分析及氧含量分析 129
5-2-3 XRD相分析 129
5-2-6 軋延性質分析 131
5-2-7 變形模式分析 131
5-3 結果與討論 132
5-3-1 成份分析及氧含量分析 132
5-3-2 XRD相分析 132
5-3-3 微硬度分析 135
5-3-4 彎曲性質分析 139
5-3-5 軋延性質分析 144
5-3-6 變形模式分析 144
5-4 結論 155
第六章 添加Cr對Ti-7.5Mo合金的結構及機械性質影響 159
6-1 前言 159
6-2 材料及實驗方法 159
6-3 結果與討論 161
6-3-1 XRD相結構分析 161
6-3-2 金相組織分析 161
6-3-3 TEM微組織分析 167
6-3-4 機械性質分析 167
6-3-4 拉伸變形模式的分析 173
6-3-5 不同合金系統的綜合比較 173
6-4 結論 178
第七章 總結論 182
第八章 參考文獻 184
附表 196
附錄 221
附錄一 專有名詞全文對照表 221
作者簡介 222
第八章 參考文獻
Ahmned T and Rack HJ. Low Modulus Biocompatible Titanium Base Alloys for Medical Devices. US Patent No. 5871595, 1999.
Ageyev NV, Guseva LN and Dolinkaya LK, Metastable phase in quenched titanium-molybdnum and titanium-vanadium alloys and the influence of small quantities of oxygen on them. Russian Matellurgy 1975;4:113-7.
Ankem S and Greene SA. Recent developments in microstructure/ property relationships of beta titanium alloys. Mater Sci Engng A 1999;263:127-31.
Arola DD and McCain ML. Abrasive waterjet peening: a new method of surface preparation for metal orthopedic implants. J Biomed Mater Res 2000 Sep;53(5):536-46.
Bagariaskii IA, Nosova GI and Tagunova TV. Factors in the formation of metastable phase in titanium-based alloys. Sov Phys Dokl (Engl Transl) 1959; 3:1014-8.
Bagariaskii IA, Nosova GI and Tagunova TV. Dokl Akad Nauk SSSR 1955;105:1225.
Baggerly RG and Williams JC. The deformation and strengthening of bcc Ti-Mo alloys. Conference of Microstructure/ Property Relationships of Titanium Alloys, San Francisco, CA, USA, 27 Feb.-3 Mar. 1994, AIME (USA), pp.55-63, 1994.
Baker C. Shape memory effect in a Ti-35Nb alloy. Metal Sci J 1971;5:92-100.
Balcerzak AT and Sass SL. Formation of the ω phase in Ti-Nb alloys. Metall Trans 1972;3:1601-5.
Blackburn MJ and Williams JC. Phase transformation in Ti-Mo and Ti-V alloys. Trans Metall Soc AIME 1968;242:2461-9.
Blackburn MJ and Feeney JA. Stress-induced transformation in Ti-Mo alloys. J Institute of Metals 1971;99:132-4.
Bothe RT, Beaton LE and Davenport HA. Reaction of bone to multiple metallic implants. Surg Gynecol Obstet 1940;17:598-602.
Bowen AW. Omega phase embrittlement in aged Ti-15% Mo. Scripta Metallurgica 1971;5:709-16.
Brown ARG, Clark D, Eastabrook J and Jepson KS. The titanium-niobium system. Nature 1964;201:914-5.
Browning E, Toxicity of Industrial Metals, 2nd ed., Butterworths, London, 1969.
Buršík J and Weatherly GC. Transformation of the β-(Ti,V) phase in Ti-V-C alloys. Scripta Mater 1999;40:1381-6.
Chang ALJ, Sass SL and Krakow W. A high resolution electron microscope study of the omega transformation in Zr-Nb alloys. Acta Metall 1976;24:29-36.
Cheng WW, Chern Lin JH and Ju CP. Effect of alloying on castability and other properties of titanium. AFS Transactions, 2000 in press.
Cheal E, Spector M and Hayes W. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty. J Orthop Res 1992;10:405-22.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th Annal Intermalionel Biomaterial Symposium, April 20-24, 1974.
Chern Lin JH, Lo SJ and Ju CP. Biocorrosion study of titanium- cobalt alloys. J Oral Rehab 1995;22(5):331-5.
Chern Lin JH, Chen YF and Ju CP. Effect of nickel addition on microstructure and properties of Ti-Co-Ni alloys. Biomaterials 1995;16(3):1401-7.
Chern Lin JH, Lo SJ and Ju CP. Biocorrosion study of titanium-nickel alloys. J Oral Rehab 1996;23:129-34.
Collings EW, Ho JC and Jaffee RI. Superconducting transition temperature, lattice instability and electron-to-atom ratio in transition-metal binary solid solutions. Phys Rev B 1972;5:4435-49.
Collings EW, Physical Metallurgy of Titanium Alloys: Revised from “The Physical Metallurgy of Titanium Alloys” (ASM International, 1984) and “Introduction to Titanium Alloys Design” in Alloys (ASM International, 1988), Battelle Memorial Institute, Columbus, Ohio, U.S.A., p. 43.
Cook HE. Nature of the omega transformation. Acta Metall 1973;21(10):1445-9.
Cook HE. Theory of the omega transformation. Acta Metall 1974; 22(2):239-47.
Cook HE. First-order structural phase transitions. Pt. 2. omega transformation in Zr-Nb alloys. Acta Metall 1975;23(9):1041-54.
Davidson JA and Kovacs P. Biocompatible Low Modulus Titanium Alloy for Medical Implants. US Patent No. 5169597, 1992.
Davidson JA. Titanium Molybdenum Hafnium Alloys for Medical Implants and Device. US Patent No. 5954724, 1999.
Dawson CW and Sass SL. The as-quenched form of the omega phase in Zr-Nb alloys. Metall Trans 1970;1:2225-33.
de Fontaine D. Mechanical instabilities in the b.c.c. lattice and the beta to omega phase transformation. Acta Metall 1970;18: 275.
Ding SJ, Ju CP and Chern Lin JH. Characterization of hydroxyapatite/ titanium coatings sputtered on Ti-6Al-4V substrate. Journal of Biomedical Materials Research 1999;44: 266-79.
Ding SJ, Ju CP and Chern Lin JH. Morphology and immersion behavior of plasma-sprayed hydroxyapatite-bioactive glass coatings. Journal of Materials Science: Materials in Medicine 2000;11:183-90.
Dobbs HS and Minski MJ. Metal ion release after total hip replacement. Biomaterials 1980;1:193-8.
Dobromyslov AV and Elkin VA. β®α" and β®ω transformations in Ti-Os alloys. Metallurgical and Materials Transactions A 1999;30:231-2.
Donachie MJ, editor. Titanium: A Technical Guide. Metal Park, OH: ASM International, 1989:31,218.
Duerig TW, Albrecht J, Richter J and Fischer P. Formation and reversion of stress-induced martensite in Ti-10V-2Fe-3Al. Acta Metal 1982;30:2161.
Dumbleton JH. The clinical significance of wear in total hip and knee prostheses. J Biomater Appl 1988;3:3-32.
Fedotov SG. Peculiarities of Changes in Elastic Properties of Ti Martensite. Titanium Science and Technology 1973;2:871-81.
Froes FH, Yolton CF, Capenos JM, Wells MGH, and Williams JC. The Relationship Between Microstructure and Age Hardening Response in the Metastable Beta Titanium Alloy Ti--11.5 Mo--6Zr--4.5Sn (Beta III). Metallurgical Transactions A 1980;11A:21-31.
Frost PD, Parris WM, Hirsch LL, Doig JR and Schwartz CM. Trans Am Soc Metals 1954;46:231.
Goodman SB, Fornasier VL, Lee J and Kei J. The histological effects of the implantation of different sizes of poltethylene particles in the rabbit tibra. J Biomed Mater Res 1990;24:517-24.
Guha A. Metals Handbook 9th ed., vol. 8, 1985. p. 133-6.
Gysler A, Lütjering G and Gerold V. Deformation behavior of age-hardened Ti-Mo alloys. Acta Metallurgica 1974;22:901-9.
Hanada S and Izumi O. Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys. Metall Trans A 1986;17:1409-20.
Hanada S and Izumi O. Correlation of tensile properties, deformation modes, and phase stability in commercialβ-phase Ti alloys. Metall Trans A 1987;18:265-71.
Hanada S, Ozeki M and Izumi O. Deformation characteristics in β phase Ti-Nb alloys. Metall Trans A 1985;16:789-95.
Hanada S, Yoshio T and Izumi O. Plastic deformation mode of retained β phase in β-eutectiod Ti-Fe alloys. J Mater Sci 1986;21:866-70.
Heimke G. Osseo-Integrated Implants, Volume I, CRC press, 1990.
Hickman BS. Omega precipitation in alloys of titanium with transition metals. Trans. TMS-AIME 1969;242:2461.
Hida M, Sukedai E, Henmi C, Sakaue K and Terauchi H. Stress induced products and ductility due to lattice instability of β phase single crystal of Ti-Mo alloys. Acta Metal 1982;30:1471-9.
Hilliard JE. Estimating grain size by the intercept method. Met Prog 1964;84:99-102.
Ho WF, Ju CP and Chern lin JH. Structure and properties of cast binary Ti-Mo alloys. Biomaterials 1999;20:2115-22.
Huckstep RL. Early mobilization and rehabilitation in orthopaedic conditions. Aust NZJ Surg 1977;47(3):344-53.
Ida K, Tani Y, Tsutsumi S, Togaya T, Nambu T, Suese K, Kawazoe T and Nakamura M. Clinical application of pure titanium crown. Dent Mater J 1985;4:191-5.
Imam MA and Fraker AC. Titanium alloys as implant materials. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the material and biological issues, ASTM STP, vol. 1272. West Conshohocken, ASTM, 1996. p. 3-16.
Ishiyama S, Hanada S and Izumi O. Effect of Zr, Sn and Al additions on deformation mode and beta phase stability of metastable beta Ti alloys. ISIJ International 1991;31(8):807-13.
Ito A, Okazaki Y, Tateishi T and Ito Y. In vitro bio-compatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys. J Biomed Mater Res 1995;29:893-900.
Jackson A. On the relationship between omega phase and twinning in bcc structures. Scripta Metal 1988;22:313-6.
Jha SK and Ravichandran KS. High-cycle fatigue resistance in beta-titanium alloys. JOM 2000;52(3):30-5.
Jones LC and Hungerford DS. The photoelastic coating technique-its validation and use. Transactions of Orthopaedic Reach Society 1987;33:306.
Kawahara H. Cytotoxicity of implantable metals and alloys. Bull Japan Inst Metals 1992;31:1033-9.
Kim HM, Kokubo T, Fujibayashi S, Nishiguchi S and Nakamura T. Bioactive macroporous titanium surface layer on titanium substrate. J Biomed Mater Res 2000;52(3):553-7.
Koul MK and Breedis JF. Omega phase embrittlement in aged Ti-V. Metall Trans 1970;1:1451-2.
Krupa D, Baszkiewicz J, Kozubowski JA, Barcz A, Sobczak JW Bilinski A, Lewandowska-Szumieil MD and Rajchel B. Effect of calcium-ion implantation on the corrosion resistance and biocompatibility of titanium. Biomaterials 2001;22(15): 2139-51.
Kuan TS, Ahrens RR and Sass SL. Stress-induced omega phase transformation in Ti-V alloys. Metall Trans A 1975; 6A:1767-74.
Kurz W and Fisher DJ. Fundamentals of Solidification. Trans Tech Publications, Switzerland, 1992:13.
Laing PG, Fergosun AB Jr and Hodge ES. Tissue reaction in rabbit muscle exposed to metallic implants. J Biomed Mater Res 1967;1:135-49.
Lasalmonie A and Chax C. Heterogeneous precipitation of the omega phase in a beta titanium alloy. Phil Mag A 1981;44(4):973-81.
Lautenschlager EP and Monaghan P. Titanium and titanium alloys as dental materials. Int Dent J 1993;43:245-53.
Lee CM, Ju CP and Chern Lin JH. Structure-property relationship of cast Ti-Mo-Ta alloys. AFS transaction, accepted. 1999.
Lee CM, Ju CP and Chern Lin JH. Structure-property relationship of cast Ti-Nb alloys. J Oral Rehabil 2002;29(4):314-22.
Lee CM, Ho WF, Ju CP and Chern Lin JH. Structure and Properties of Titanium-25Niobium-X Iron Alloys. Journal of Materials Science: Materials in Medicine 2002;13:1-6.
Lin DJ, Ju CP and Chern Lin JH. Structure and properties of cast Ti-Fe alloys. AFS Trans 1999;216:859-864.
Lin W, Spalt H and Batterman BW. Study of the omega phase in Zr-Nb alloys by mossbauer and x-ray diffuse scattering. Phys Rev B 1976;13:5158-69.
Litvinov VS, Popov AA, Elkina OA and Litvinov AV. Deformation twins {332}<113> in beta-titanium alloys. Fizika Metallov I Metallovedenie (Russia) 1997;83(5):152-60.
Long M and Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials 1998;19:1621-39.
McCabe KK and Sass SL. Initial stages of the omega phase transformation in Ti-V alloys. Phil Mag 1971;23:957-70.
McKellop FA and Röstlund TV. The wear behavior of ion-implanted Ti-6Al-4V against UHMW polyethylene. Journal of Biomedical Materials Research 1990;24:1413-25.
Mishra AK, Davidson JA, Poggie RA, Kovacs P, FitzGerald TJ. Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr – a new titanium alloy for surgical implants. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the material and biological issues, ASTM STP, vol. 1272. West Conshohocken, ASTM, 1996. p. 96-113.
Mitsuyoshi Y and Taki K. Titanium Alloys With Excellent Corrosion Resistance. US Patent no. 5238647, 1991.
Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Engng A 1998;243:231-6.
Nishizawa H, Sukedai E, Liu W and Hashimoto H. Effect of applied stress on formation of ω phase in β–Ti alloys. Materials Transcation, JIM 1998;39:609-612.
Oh I and Harris WH. Proximal strain distribution in the loaded femur. Journal of Bone and Joint Surgery 1978;60A:75-85.
Oka M and Taniguchi Y. Metall Trans 1979;10A:651-3.
Oka M and Taniguchi Y. Crystallography of stress-induced products in metastable beta Ti-Mo alloys. Titanium ’80: Science and Technology (Proc. Fourth Int. Conf. On Titanium, Kyoto, Japan), The Metallurgical Society of AIME, 1980.
Oka M and Taniguchi Y. Stress-induced products in meta-stable beta Ti-Mo and Ti-V alloys. J Jpn Inst Met 1978;42(8):814-20.
Okazaki Y, Ito Y, Kyo K and Tateishi T. Corrosion resistance and Corrosion fatique strength of new titanium alloys for medical implants without V and Al. Mater Sci Eng 1996;213:138-47.
Okazaki Y, Asao S, Rao S and Tateishi T. Effect of concentration of Zr, Sn, Nb, Ta, Pd, Mo, Co, Cr, Si, Ni, Fe on the relative growth ratios of biocells. J Japan Inst Metal 1996;60:902-6.
Okazaki Y, Kyo K, Ito Y and Tateishi T. Effect of Mo and Pd on corrosion resistance of V-free titanium alloys for medical implants. Materials Transactions, JIM 1997;38:344-52.
Pan J, Leygraf C, Thierry D and Ektessabi AM. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. J Biomed Mater Res 1997;35:309-18.
Paris HG, LeFevre BG and Starke EA, Jr. Deformation behavior of quenched and aged beta Ti-V alloys. Metall. Trans A 1976;7:273.
Park JB, Editor, Biomaterials science and engineering, Plenum Press, New York, 1984.
Park JB and Lakes RS, “BIOMATERIALS An Introduction 2nd ed.” Plenum Press, New York, P.2-3, 1992.
Perl DP and Brody AR. Alzeihmer’s disease: X-ray spectrometric evidence of aluminium accumulation in neurofibrillary tangle-bearing neurons. Science 1980;208:297-99.
Pourbaix M. Electrochemical corrosion of metallic biomaterials. Biomaterials 1984;4:122-34.
Prendergast P and Taylor D. Stress analysis of the proximo-medical femur after total hip replacement. J Biomed Engng 1990;12:379-82.
Rae T. A study of the effects of particulate metal of orthopaedic interest on murine macrophrages in vitro. J Bone Jt Surg 1975;57:444.
Rae T. The biological response to titanium and titanium- aluminium- vanadium alloy particles. Biomaterials 1986;7:37-40.
Rao S, Ushida T, Tateishi T, Okazaki Y and Asao S. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Biomed Mater Engng 1996;6:79-86.
Rieu J, Pichat A, Rabbe LM, Rambert A, Chabrol C and Robelet M. Structure modifications induced by ion implantation in metals and polymers used for orthopaedic prostheses. Materials Science and Technology 1992;8:589-93.
Sass SL. The ω phase in a Zr-25 at.% Ti alloy. Acta Metall 1969;17:813-20.
Sass SL and Borie B. Symmetry of the structure of the omega phase in Zr and Ti alloys. J Appl Crytall 1972;5:236-8.
Schutz RW. Environmental behavior of beta titanium alloys. JOM 1994;46(7):24-9.
Schwartz Z and Boyan BD. Underlying mechanisms at the bone-biomaterial interface. Journal of Cellular Biochemistry 1994;56:340-7.
Sikka SK, Vohra YK and Chidambaram R. Omega phase in material. Progr Mater Sci 1982;27:245-310.
Silcock JM, Davies MH and Hardy HK. Monography and report Series No.18, p.93, Inst. of Metals, London, 1956.
Silcock JM. An x-ray examination of the ω phase in TiV, TiMo, and TiCr alloys. Acta Metallurgica 1958;6:481-93.
Smith DC, “Surface Characterization of Implant Material: Biological Implications”, The Bone-Biomaterial Interface, edited by Davies JE, University of Toronto Press, Toronto Buffalo London, 3-18, 1991.
Song Y, Xu DS, Yang R, Li D, Wu WT and Guo ZX. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Materials Science and Engineering 1999;A260:269-74.
Steinemann SG. Surgical Implant and Alloy for Use in Making an Implant. US Patent No. 4040129, 1977.
Steinemann SG. Corrosion of titanium and titanium alloys for surgical implants. Ti’84 Science and Technology. Ljering G, Zwicker U, Bunk W. editors. 1984;1373.
Sumner DR and Galante JO. Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res 1992;274:202-12.
Takemoto Y and Hida M. Solute Enrichment in the Omega Phase in Ti-14Mo. Scripta Metallurgica et Materialia 1991;25:299-302.
Takemoto Y, Hida M and Sakakibara A. Deformation induced transformation of omega phase in aged Ti-14wt% Mo alloy. J Japan Inst Metals 1995;59:780-7.
Takemoto Y, Hida M and Sakakibara A. Martensitic {332}<113> twin in β type Ti-Mo Alloy. J. Japan Inst. Metals 1996;30(11):1072-1078.
Takemoto Y, Hida M, Sukedai E and Sakakibara A. Change of deformaiton modes mode caused by aging of Ti-14mass%Mo alloy single crystals and embrittlement mechanism due to the ω-phase. J Japan Inst Metals 1989;53:1004.
Thompson GJ and Puleo DA. Ti-6Al-4V ion solution inhibhtion of osteogenic cell phenotype as a function of differentiation timecourse in vitro. Biomaterial 1996;17:1949-54.
Tsutsue T, Kawaguchi H, Fujino A, Sakai H and Nakamura T. Exposure of macrophage-like cells to titanium particles does not affect bone resorption, but inhibits bone formation. Journal of Orthopaedic Science 1999;4:32-8.
Van Noort R. Titanium: the implant material of today. J Mater Sci 1987;22:3801-11.
Vander Voort GF, in “METALLOGRAPHY Principles and Practice”, (McGraw-Hill, USA) 1984, p. 449.
Walker PR, LeBlanc J and Sikorska M. Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry 1989;28:3911-15.
Wang G, Wang H and Liu X. A study of the composition of the passive films on a Ti-Mo alloy in HCl and H2SO4. Journal of Materials Engineering and Performance 1997;6(2):199-202.
Wang K. The use of titanium for medical applications in the USA. Mater Sci Engng A 1996;213:134-7.
Wang KK, Gustavson LJ and John H. High Strength, Low Modulus, Ductile, Biocompatible Titanium Alloy. US Patent No. 4857269, 1989.
Wang KK, Gustavson LJ and Dumbleton JH. Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed for surgical implants. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the material and biological issues, ASTM STP, vol. 1272. West Conshohocken, ASTM, 1996. p. 76-87.
Weiss I and Semiatin SL. Thermomechanical processing of beta titanium alloys – an overview. Mater Sci Engng A 1998;243:46-65.
Williams JC, Sommer AW and Tung PP. Influence of O Concentration on the Internal Stress and Dislocation Arrangements in Alpha-Ti. Met Trans 1972;3(11):2979-84.
Williams JC, de Fontaine D and Paton NE. The ω phase as an unusual shear transformation. Metall Trans 1973;4:2701-8.
Williams JC, Hickman BS and Marcus HL. The effect of omega phase on the mechanical properties of titanium alloys. Metall Trans 1971;2:1913-9.
Williams JC, Thompson AW, Rhodes CG and Chesnutt JC. Strengthening and fracture mechanisms in titanium alloys. Critical review. Conference in Titanium and Titanium Alloys, Scientific and Technological Aspects, Vol.1, Moscow, USSR, 18-21 May 1976. (Plenum Press, 233 Spring St., New York, N. Y. 10013, pp. 467-496, 1982)
Wilson SAV and Freeman MAR, editors, The Scientific Basis of Joint Replacement, Wwiley, New York, 1977.(in Park JB, Editor, Biomaterials science and engineering, 1984 Plenum Press, New York.)
Wishbey A, Gregson PJ, Peter LM and Tuke M, Effect of surface treatment on the dissolution of titanium-based implant materials. Biomaterials 1991;12:471-3.
Wolff J. Das Gesetz Der Transformation Der Knochen. Hirshwald Verlag, Berlin, 1892.
Woo SLY, Akeson WH, Coutts RD, Rutherford L, Doty D, Jemmott GF and Amiel D. A comparison of cortical bone atrophy secondary to fixation with plates with large differences in bending stiffness. J Bone Jt Surg 1976;58a:190-5.
Wood RM. Martensitic alpha and omega phases as deformation products in a titanium-15% molybdenum alloy. Acta Metallurgica 1963;11:907-14.
Xu DS, Song Y, Li D and Hu ZQ. Site occupancy of alloying elements in Ti sub 3 Al compounds. Materials Science and Engineering A 1997;A234-236:230-3.
Yumoto S, Ohashi H, Nagai H, Kakimi S, Ogawa Y, Iwata Y and Ishii K. Aluminum neurotoxicity in the rat brain. Int J of PIXE, World Scientific Publishing Company, 1992:2(4):493-504.
Zardiakas LD, Michell DW and Disegi JA. Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications. In: Brown SA, Lemons JE, editors. Medical applications of titanium and its alloys: the material and biological issues, ASTM STP, vol. 1272. West Conshohocken, ASTM, 1996. p. 60-75.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top