跳到主要內容

臺灣博碩士論文加值系統

(23.20.20.52) 您好!臺灣時間:2022/01/24 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施嘉玲
研究生(外文):Chia-Ling Shih
論文名稱:錫鋅銀無鉛銲錫與銅基材之潤濕行為
論文名稱(外文):Wetting Behavior between Sn-Zn-Ag Lead-free Solders and Cu Substrate
指導教授:林光隆
指導教授(外文):Kwang-Lung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:90
語文別:中文
論文頁數:93
中文關鍵詞:無鉛銲錫可銲錫性介金屬化合物錫鋅銀銲錫
外文關鍵詞:lead-free soldersolderabilityIMCSn-Zn-Ag
相關次數:
  • 被引用被引用:14
  • 點閱點閱:827
  • 評分評分:
  • 下載下載:134
  • 收藏至我的研究室書目清單書目收藏:0
本研究係探討錫鋅銀無鉛銲錫與銅基材的潤濕行為與可銲錫性,並探討錫鋅銀合金之液相線溫度與顯微組織。錫鋅銀銲錫組成分別是Sn-9Zn、Sn-8.99Zn-0.1Ag、Sn-8.97Zn-0.3Ag、Sn-8.96Zn-0.5Ag、Sn-8.9Zn-1.0Ag、Sn-8.87Zn-1.5Ag、Sn-8.82Zn-2.0Ag、Sn-8.78Zn-2.5Ag以及Sn-8.73Zn-3.0Ag,利用潤濕天平進行銲錫與銅基材間可銲錫性量測,探討浸鍍溫度與銲錫組成對可銲錫性之影響,以期獲得錫鋅銀銲錫與銅基材間較佳的潤濕條件,並藉由潤濕反應分析進一步探討影響潤濕行為之可能因素。
錫鋅銀合金之顯微組織除了錫基地相、富鋅相之外,還有銀鋅介金屬化合物析出,銀含量增加時,銀鋅介金屬化合物析出越多,顯微組織中錫鋅共晶區域減少。合金之液相線溫度隨銀含量增加而提高。銀含量0.5wt%以內,液相線溫度約在199oC,銀含量高於0.5wt%,液相線溫度在206~216 oC之間。
可銲錫性研究結果顯示,錫鋅銀銲錫在銅基材上之披覆尚稱完整,但銀含量增加,鍍層平整性變差,浸鍍溫度250oC時,銀含量增加會拉長潤濕時間,最大潤濕力則不受影響,提高浸鍍溫度會縮短潤濕時間,但因浸鍍溫度太高使助熔劑失去部份助熔效果,造成最大潤濕力下降。
由錫鋅銀銲錫與銅基材潤濕界面分析得知,在潤濕過程中有兩種界面金屬間化合物生成,靠近銅基材處是Cu5Zn8介金屬化合物,靠近銲錫處則是AgZn3介金屬化合物,浸鍍溫度提高時,會有銅元素擴散固溶到AgZn3介金屬化合物中。
綜合上述實驗結果推測,銀含量增加會降低界面銅鋅形成化合物之活性,因此浸鍍溫度250 oC時,潤濕時間會隨銀含量增加而增加,浸鍍溫度300 oC時,因為界面潤濕反應加快,但銀影響界面鋅活性之效應不如溫度效應,使潤濕時間縮短而不隨銀含量增加有明顯趨勢。
This research is to investigate the wetting behavior and solderability between Sn-Zn-Ag solders and Cu substrate. The liquidus temperature and microstructure of Sn-Zn-Ag alloys are also discussed. The solder compositions are, in weight percent, Sn-9Zn, Sn-8.99Zn-0.1Ag, Sn-8.97Zn-0.3Ag, Sn-8.96Zn-0.5Ag, Sn-8.9Zn-1.0Ag, Sn-8.87Zn-1.5Ag, Sn-8.82Zn-2.0Ag, Sn-8.78Zn-2.5Ag and Sn-8.73Zn-3.0Ag. The solderability was investigated with a wetting balance. The influences of dipping temperature and composition of solders on the solderability were studied in order to obtain better wetting conditions of the system. Furthermore, the possible factors of affecting wetting behavior were discussed by wetting reaction.
The microstructure of Sn-Zn-Ag alloys consists of β-Sn matrix, Zn-rich phase and Ag-Zn precipitates. The amount of Ag-Zn precipitates increases and that of Zn/Sn eutectic region reduces with increasing Ag % of the solder. The liquidus temperature increases with increasing Ag % of the solder. The liquidus temperature is about 199oC when the Ag content is within 0.5 wt%. When the solder contains 1.0 wt% Ag and above, the liquidus temperature is between 206 oC~216 oC.
The result of solderability test revealed that Sn-Zn-Ag solder deposit can completely cover the Cu substrate. The surface of the solder deposit becomes rougher with increasing Ag % of the solder. The wetting time increases with Ag content at a dipping temperature of 250 oC. But the wetting force exhibits no particular trend with respect to Ag content. A raise in dipping temperature decreases the wetting time, yet, lowers the wetting force due to the high dipping temperature which weakens the fluxing ability of flux.
According to the wetting interface analysis, there are two intermetallic compounds formed at the Cu/Sn-Zn-Ag solder interface during wetting reaction. The intermetallic compound formed near Cu substrate is Cu5Zn8 and that formed near solder side is AgZn3. Cu element diffuses into AgZn3 intermetallic compound owning to the higher dipping temperature.
According to the experimental result, it can be conjectured that the activity of forming Cn-Zn intermetallic compound is lowered by increasing Ag % of the solder. Consequently, the wetting time increases with Ag content of the solder at dipping temperature of 250oC. When the dipping temperature is 300oC, the more rapid rate of wetting reaction shortens the wetting time. The effect of Ag % on the activity of Zn is less prominent than the temperature effect. Hence Ag content of the solder does not show a particular effect on the wetting time at 300oC.
總目錄

中文摘要....................................... Ⅰ
英文摘要....................................... Ⅱ
總目錄......................................... Ⅳ
表目錄......................................... Ⅵ
圖目錄............................................. Ⅶ
第壹章、簡介…………………………………………… 1
1-1 銲錫與電子構裝技術……………………………… 1
1-2 銲錫材料性質比較………………………………… 4
1-2-1 銲錫材料熔點比較……………………………… 5
1-2-2 傳統鉛錫銲錫之性質…………………………… 5
1-2-3 無鉛銲錫開發與性質比較……………………… 5
1-3 潤濕現象…………………………………………… 12
1-3-1 可銲錫性與助熔劑……………………………… 12
1-3-2 潤濕天平之原理及應用………………………… 17
1-4 研究目的………………………………………….. 22
第貳章、實驗方法與步驟……………………………… 23
2-1 實驗構想…………………………………………… 23 2-2 無鉛銲錫合金的配製……………………………… 23
2-2-1 91Sn-9Zn合金配製……………………………… 23
2-2-2錫-鋅-銀合金配製……………………………… 23
2-3 熔點量測實驗……………………………………… 26
2-4 合金顯微組織觀察與分析 ……………………26
2-4-1 合金元素分佈分析……………………………… 28
2-4-2 合金化合物結晶相分析……………………… 28
2-5 可銲錫性量測……………………………………… 28
2-5-1 基材前處理……………………………………… 28
2-5-2 潤濕天平實驗…………………………………… 29
2-6 錫鋅銀合金銲錫與銅的界面反應分析…………… 31
2-6-1 界面金屬間化合物之成份分析………………… 31
2-6-2 界面金屬間化合物之表面形態分析…………… 31
第參章、結果與討論…………………………………… 33
3-1 錫鋅銀銲錫合金顯微組織觀察與分析…………… 33
3-1-1 錫鋅銀合金的X光繞射分析…………………… 33
3-1-2 錫鋅銀合金之顯微結構觀察與分析…………… 33
3-2 錫鋅銀合金銲錫之熱分析………………………… 46
3-3錫鋅銀銲錫之可銲錫性…………………………… 51
3-3-1 鍍層之表面狀況………………………………… 51
3-3-2 溫度及不同銲錫組成對潤濕時間之影響……… 54
3-3-3 溫度及不同銲錫組成對最大潤濕力之影響…… 57
3-3-4 銲錫與助熔劑之界面張力及銲錫與銅基材間之接觸角.. 57
3-3-5 錫鋅銀銲錫與銅基材之最佳潤濕條件………… 61
3-4 錫鋅銀銲錫與銅基材之界面觀察與分析………… 64
3-4-1 界面金屬間化合物之表面形態………………… 64
3-4-2 界面金屬間化合物之分析……………………… 67
3-4-3 潤濕現象探討…………………………………… 74
第肆章、結論…………………………………………… 83
參考文獻………………………………………………… 84
誌謝……………………………………………………… 92
自述……………………………………………………… 93
1. 陳力俊主編, 微電子材料與製程, 中國材料科學學會, 第十章, 民國八十九年.
2. M.. R. Pinnel and W. H. Knausenberger, “Interconnection System
Requirements and Modeling”, AT&T Tech. Journal, Vol. 66, No. 4, 1987, pp. 45-56.
3. 李宗銘, “異方性導電膠材料技術與應用”, 工業材料147期, pp.93-98
4. P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, JOM, Vol. 45, No. 7, July 1993, pp. 14-19.
5. H. Reid, D. Moynihan, J. Leiberman, and B. Bradley, “Toxic Lead Reduction Act of 1990”, S-2637, 1990.
6. S. Jin, “Developing Lead-Free Solders: A Challenge and Opportunity“, JOM, Vol. 45, No. 7, July 1993, p. 13.
7. M. Hansen, K. Anderko, “Constitution of Binary Alloys”, McGraw-Hill, New York, 1958
8. J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, Internationsl Materials Reviews, Vol. 40, No.
2, 1995, pp. 65-93.
9. E. P. Wood and K. L. Nimmo, “In search of new lead-free electronic solders”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp. 709-714.
10. M. McCormack, I. Artaki, S. Jin, A. M. Jackson, D. M. Machusak, G. W. Kammlott, D. W. Finley, “Wave soldering with a low melting point Bi-Sn alloy: effects of soldering temperature and circuit board finishes”, J. Electron. Mater., Vol. 25, No. 7, 1996, pp.1128-1131.
11. M. E. Loomans, S. Vaynman, G. Ghosh, M. E. Fine, “Investigation of Multi-Component Lead-free Solders”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp.741-746.
12. K. Seelig, “A Study of Lead-free Solder Alloys”, Circuits Assembly, Vol. 6, No. 10, 1995, pp. 46-48.
13. I. Artaki, D. W. Finley, A. M. Jackson, U. Ray, P. T. Vianco, “Wave Soldering with Lead-free Solders”, in: Proceedings of the Technical Program on Advanced Electronics Manufacturing Technologies, August 1995, SMI Surface Mount International, San Jose, CA, pp. 495-510.
14. N.C. Lee, J. Slattery, J. Sovinsky, I. Artaki, P. Vianco, “A Novel Lead-free Solder Replacement”, Circuits Assembly, Vol. 6, No. 10 , 1995, pp. 36-44.
15. F. Hua, J. Glazer, “Lead-free Solders for Electronic Assembly, Design and Reliability of Solders and Solder Interconnections”, in: Design and Reliability of Solders and Solder Interconections, R. K. Mahidhara, D. R. Frear, S. M. L. Sastry, K. L. Murty, W. L. Winterbottom (Eds.), The Minerals, Metals and Materials Society, 1997, pp. 65-74
16. M. McCormack and S. Jin, “Progress in the Design of New Lead-Free
Solder Alloys”, JOM, Vol. 45, No.7, July 1993, pp. 36-40.
17. A. M. Jackson, P. T. Vianco, I. Artaki, “Manufacturing Feasibility of Several Lead-free Solders for Electronic Assembly”, in: Proceedings of the 7th International SAMPE Electronics Conference, 20-23 June 1994, Parsippany, NJ, pp. 381-391.
18. M. McCormack, S. Jin, “Improved Mechanical Properties in New, Pb-free Solder Alloys”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp. 715-720.
19. C. M. Miller, I.E. Anderson, J.F. Smith, “A Viable Tin-Lead Solder Substitute: Sn-Ag-Cu”, J. Electron. Mater., Vol. 23, No. 7 , 1994, pp.
595-601.
20. U. R. Kattner and W. J. Boettinger, “On the Sn-Bi-Ag Ternary Phase Diagram”, J. Electron. Mater., Vol. 23, No. 7, 1994, pp. 603-610.
21. P. T. Vianco, F. M. Hosking, J. A. Rejent, “Wettability Analysis of Tin-based, Lead-free Solders”, in: Proceedings of the Technical Program – National Electronic Packaging and Production Conference, Vol. 3, Published by Cahner Exposition Group, 1992, Anaheim, CA, pp. 1730-1738.
22. D. B. Knorr, L. E. Felton, “Designing Lead-free Solder Alloys for Advanced Electronics Assembly”, in: Proceedings of the 1994 Design for Manufacturability Conference, ASME N.Y. , New York, pp. 27-34.
23. M. McCormack, S. Jin, H. S. Chen, D. A. Machusak, “New Lead-free, Sn-Zn-In Solder Alloys”, J. Electron. Mater., Vol. 23, No. 7 , 1994, pp. 687-690.
24. J. H. Vincent and G. Humpston, “Lead-free Solders for Electronic Assembly”, GEC Journal of Research, Vol. 11, No. 2, 1994, pp. 76-89.
25. H. H. Manko, Solders and Soldering, Second Edition, McGraw-Hill Book Company, New York, Chap. 2-4, 1979.
26. J. S. Hwang, “Solder Paste in Electronics Packages”, Van Nostrand Reinhold, Chap. 4, 1992.
27. K. N. Tu, “Cu/Sn Interface Reaction : Thin-film Case Versus Bulk Case”, Materials Chemistry and Physics, Vol. 46, 1996, pp. 217-223.
28. C. Melton, “The Effect of Reflow Process Variables on the Wettability of Lead-Free Solders”, JOM, Vol. 45, No. 7, July 1993,
pp. 33-35.
29. J. M. Ferriter and S. P. Redmond, “Specialty Solders in Microelectronic Assembly”, Materials Engineering, Vol. 109, No. 8, 1992, pp. 8-9.
30. J. S. Hwang, “Solder Paste in Electronics Packaging – Technology
and Applications in Surface Mount, Hybrid Circuits, and Component
Assembly”, Van Nostrand Reinhold, New York, Chap. 4, 1992.
31. G. Leonida, Handbook of Printed Circuit Design, Manufacture,
Components & Assembly, Electrochemical Publications Limited, Ayr, Scotland, Chap. 5-6, 1981.
32. K. Suganume, “Interfacial Phenomena in Lead-free Soldering”, Proceedings EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, 1999, pp. 620-625.
33. D. Rflander, E. G. Jacobs, and R. Fpinizzotto, “Activation Energies of Intermatallic Growth of Sn-Ag Eutectic Solder on Copper Substrates”, J. Electron. Mater., Vol. 26, No. 7, 1997, pp. 883-887.
34. K. Warashina, Y. Kariya, Y. Hirata and M. Otsuka, “Thermal Fatigue Damage of Quad Flat Pack Lead and Sn-3.5Ag-X(X=Bi and Cu) Solder Joints”, Proceedings EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, 1999, pp. 626-631.
35. D. Shangguan, A. Achari and W. Green, “Application of Lead-Free Eutectic Sn-Ag Solder in No-clean Thick Film Electronic Modules”, IEEE Trans, CPMT, PartB, Vol. 17, No. 4, Nov. 1994, pp. 603-611.
36. T. Y. Lee and K. N. Tu, “Electromigration of Eutectic SnPb and SnAg3.8Cu0.7 Flip Chip Solder Bumps and Under Bump Metallization”, J. Appl. Phys., Vol. 90, No. 9, Nov. 2001, pp. 4502-4508
37. M. Harada and R. Satoh, “Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbonding”, IEEE Trans, CHMT, PartB, Vol. 13, No. 4, Dec. 1990, pp. 736-742.
38. K. Habu, N. Takeda, H. Matenabe, H. Ooki, J. Abe, T. Saito, T. Tainigauchi, K. Tadayma, “Development of New Pb-Free Solder Alloy”, Proceedings EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, 1999, pp. 21-24.
39. K. Habu, N. Takeda, H. Matenabe, H. Ooki, J. Abe, T. Saito, T. Tainigauchi, K. Tadayma, “Development of Lead-Free Solder Alloys of the Ge Doped Sn-Ag-Bi system”, Proceedings EcoDesign’99: First International Symposium on Enviromentally Conscious Design and Inverse Manufacturing, 1999, pp.606-609.
40. L. Ye, Z. Lai, J. Liu, and A. Tholen, “Recent Achievement in Microstructure Investigation of Sn-0.5Cu-3.4Ag Lead-Free Alloy by Adding Boron”, 1999 International Symposium on Advanced Packaging Materials, pp. 262-267.
41. K. L. Lin and T.P. Liu, “High Temperature Oxidation of a Sn-Zn-Al Solder ”, Oxidation of Metals, Vol. 50, No. 3/4, 1998, pp. 255-267.
42. K. L. Lin, L.H. Wen and T.P. Liu, “The Microstructure of the Sn-Zn-Al Solder Alloys”, J. Electron. Mater., Vol. 27, No. 3, 1998, pp. 97-105.
43. A. Sebaoun, D. Vincent, and D. Treheux, “Al-Zn-Sn phase Diagram-Isothermal Diffusion in Ternary System”, Materials Science and Technology, Vol. 3, April 1987, pp. 241-248.
44. K. L. Lin and F.C. Chung and T.P. Liu, “The Potentiodynamic Polarization Behavior of Pb-Free XIn-9(5Al-Zn)-YSn Solders”, Materials Chemistry and Physics, Vol. 53, 1998, pp. 55-59.
45. H. Mavoori, S. Vaynman, J. Chin, B. Moren, L.M. Keer, and M.E. Fine, “Mechanical Behavior of Eutectic Sn-Ag and Sn-Zn Solders”,
Mat. Res. Soc. Symp. Proc., Vol. 395, 1995, pp. 161-175.
46. L. E. Felton, C.H. Raeder and D.B. Knorr, “The Properties of Tin-Bismuth Alloy Solders”, JOM, Vol. 45, No. 7, July 1993,pp. 28-32.
47. E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, J. Electron. Mater., Vol. 23, No. 8, 1994, pp.
709-713.
48. M. McCormack, S. Jin, G.W. Kammlott and H.S. Chen, “New Pb-free Solder Alloy with Superior Mechanical Properties”, Appl. Phys. Lett., Vol. 63, No. 1, 5 July 1993, pp. 15-17.
49. J. W. Morris, Jr., J. L. F. Goldstein and Z. Mei, “Microsturcture and Mechanical Properties of Sn-In and Sn-Bi Solders”, JOM, Vol. 45,
No. 7, July 1993, pp. 25-27.
50. Z. Mei and J. W. Morr, Jr., “Superplastic Creep of Low Melting Point Solder Joints”, J. Electron. Mater., Vol. 21, No. 4, 1992, pp.401-407.
51. J. W. Morris, Jr., J. L. F. Goldstein and Z. Mei, The Mechanics of Solder Alloy Interconnects, Van Nostrand Reinhold, N.T, 1994, P. 4.
52. Y. S. Wook, W. K. Choi and H. M. Lee, “Calculation of Surface Tension and Wetting Properties of Sn-Based Solder alloys”, Scripta Materialia, Vol. 40, No. 3, Jan. 1999, pp. 297-302.
53. G. Leonida, Handbook of Printed Circuit Design, Manufacture, Components & Assembly, Electrochemical Publications Limited, Ayr, Scotland, Chap. 5-6, 1981.
54. R. J. K. Wassink, Soldering in Electronics, 2nd edn., Chap. 7, 1989.
55. Y. Hirose, H. Togawa and J. Sumiya, “Effects of Oxidation-Reduction Heating Conditions on the Wettability of Silicon-Containing Steels in a Simulated Continuous Galvanizing Process”, Thirteenth International Galvanizing Conference, London, Portcullis Press Limited, 1982, pp. 451-455.
56. C. Lea, “Quantitative Solderability Measurement of Electronic Components - Part 1 : The Wetting Balance”, Soldering & Surf. Mount Technol., No.4, 1990, pp. 8-13.
57. F. G. Yost, F.M. Hosking, and D.R. Frear, The Mechanics of Solder Alloy Wetting and Spreading, Van Nostrand Reinhold, New York, Chap. 2, 1993.
58. P. T. Vianco, F.M. Hosking, and D.R. Frear, “Lead-Free Solders forElectronics Applications - Wetting Analysis”, Materials Developments in Microelectronic Packaging Conference Proceedings, Montreal, Quebec, Canada, Aug. 19-22, ASM, Materials Park, Ohio, 1991, pp. 373-380.
59. T. Takemoto, T. Funaki, and A. Matsunawa, “Electrochemical Investigation on the Effect of Silver Addition on Wettability of Sn-Zn System Lead-Free Solder”, J. Japan Welding Society, Vol. 17, No. 2 , 1999, pp. 251-258.
60. 陳俊仁, 銦錫銲錫與無電鍍鎳銅磷之潤濕行為和界面反應, 國立成功大學材料科學與工程研究所碩士論文,民國85年
61. T. B. Massalski, Binary Alloy Phase Diagrams, American Society for Matals, Vol. 1, 1986.
62.. K. Suganuma and K. Niihara, “Wetting and Interface Microstructure Between Sn-Zn Binary Alloys and Cu”, J. Mater. Res., Vol. 13, No. 10, Oct 1998, pp. 2859-2865.
63. D. R. Frear, J.R. Michael and P.F. Hlava, J. Electron. Mater., Vol. 22, No. 2, 1993, pp.185-194
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top