跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃宏欣
研究生(外文):Hong-Hsin Huang
論文名稱:TiCl4-NH3-N2-H2系化學氣相沉積氮化鈦之成長特性研究
論文名稱(外文):Growth Characteristics of TiN Coatings by Chemical Vapor Deposition of TiCl4-NH3-N2-H2 System
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hsiung Hon
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:138
中文關鍵詞:氮化鈦常壓化學氣相沉積法氨氣
外文關鍵詞:TiN filmsNH3Atmospheric pressure chemical vapor deposition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1900
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:0
氮化鈦(TiN)鍍膜是工具之耐磨耗保護層,更是積體電路中不可或缺之阻障層及閘電極。化學氣相沉積法具有鍍膜與基材結合性強、穿透性佳等優點而被廣泛使用。但使用此法沉積TiN鍍膜,所得結果莫衷一是;而且N2於TiCl4-NH3系統中對TiN鍍膜結構及性質影響之探討亦付之闕如;另外,許多文獻指出H2在TiN鍍膜之沉積過程扮演者裂解TiCl4的角色,但卻也有研究者報導H2對於TiN鍍膜之生成並無影響,值得進一步探討。本研究使用常壓化學氣相沉積 (Atmospheric Pressure Chemical Vapor Deposition, APCVD) 法分別沉積TiN鍍膜於矽基板及石墨基板,在高溫製程之TiCl4-H2-N2系統中,加入NH3為反應源,降低TiN鍍膜之沉積溫度至600 �aC,探討被覆系統中,NH3、N2及H2體積分率對TiN鍍膜成長速率、微觀結構、表面型態及硬度與導電率等性質之影響。
研究結果顯示,以TiCl4-NH3系統沉積TiN鍍膜時,於600 �aC到750 �aC沉積之反應為擴散控制,活化能為45.7 kJ/mole;當沉積溫度高於750 �aC時,TiN鍍膜之成長速率下降,其反應機構變成表面控制反應。以TiCl4-NH3-N2-H2系統沉積TiN鍍膜時,TiN鍍膜之成長速率隨著NH3體積分率之增加而增加,得到TiN鍍膜之成長速率與NH3分壓之反應次方為0.23。其晶格常數隨著NH3體積分率之增加而降低。由表面型態觀察得知,隨著NH3體積分率之增加,TiN結晶由板狀晶逐漸變厚且逐漸失去其刻面,而形成不規則狀結晶。於TEM分析中發現於低NH3體積分率下所得之TiN,其晶粒中有差排存在;而在高NH3體積分率之下TiN其晶粒中有不同型式之應變存在。
以TiCl4-NH3系統沉積TiN鍍膜時,無N2添加及N2體積分率為10 vol.%時,TiN鍍膜之成長速率維持約15.6 �慆/h。但當N2體積分率在20 vol.%時,成長速率降低至6.3 �慆/h,但隨著N2體積分率之增加到40 vol.% TiN鍍膜之成長速率增加為8.4 �慆/h。TiN鍍膜中之N/Ti計量比隨著N2體積分率之增加而下降。TiN鍍膜之晶格常數,隨著N/Ti計量比之增加而增加。TiN鍍膜(200)面之織構係數隨著N/Ti計量比之增加而降低。TiN鍍膜晶格常數隨著N/Ti計量比(x)之增加而線性增加,其線性關係為a = 4.1182 + 0.1376 x。N2之體積分率增加促使TiN鍍膜之圓錐狀晶的成長,且圓錐狀晶之尺寸隨N2體積分率之增加而逐漸變大,在N2體積分率為40 %時,其圓錐狀晶長到連接在一起。
TiN鍍膜之成速率隨著H2體積分率之增加而降低,得到TiN鍍膜之成速率與H2分壓之反應次方為-0.50。H2之添加對TiN鍍膜之晶格常數並無明顯影響,但由於鍍膜受到反應生成之HCl及H2之還原特性的侵蝕作用,使TiN鈦鍍膜之表面型態由平整而轉呈現不規則的顆粒狀。H2體積分率之增加,使TiN鍍膜之硬度提升但其電阻率卻下降。
TiN films were deposited on silicon and graphite substrates by atmospheric pressure chemical vapor deposition. Adding NH3 into TiCl4-H2-N2 system, the TiN deposition temperature was decreased from 780 �aC to 600 �aC. The TiN growth characteristics such as growth rate, structure, texture and microstructure, and properties such as hardness and resistivity were investigated by changing the process parameters of NH3, N2 and H2 volume fraction addition. The free energy of reaction and reaction order of reactants were calculated.
For TiCl4-NH3 system, the reaction mechanism of TiN was diffusion controlled reaction when the deposition temperature was between 600 �aC and 750 �aC, and the activation energy of 45.7 kJ/mole was obtained. When deposition temperature was higher than 750 �aC, the lower growth rate of TiN films was obtained where the surface reaction controlled mechanism dominated. For TiCl4-NH3-N2-H2 system, the growth rate of TiN film increased with the increase of NH3 volume fraction and a positive reaction order of 0.23 was obtained. The nodular and nonfaceted grain was favored when the TiN was deposited with high NH3 volume fraction. At the same time, the highest TC value of reflection changed from (220) to (200). The lattice parameter decreased with the increase of NH3 volume fraction and dislocation was found in TiN grain as deposited with a lower NH3 volume fraction but the microstrain was found in TiN grain as deposited with a higher NH3 volume fraction.
For TiCl4-NH3 system, two regions of TiN growth rate were found, where the growth rate of TiN about 15.6 �慆/h was obtained without and with 10 vol.% N2 addition, but 6.3 �慆/h was obtained as added with 20 vol.% N2. When the N2 volume fraction increased from 20 % to 40 %, the growth rate of TiN film increased from 6.3 to 8.4 �慆/h. With a high N2 volume fraction addition, the growth rate of TiN film slightly increased with the increase of N2 volume fraction. The ratio of N/Ti of TiN films decreased with the increase of N2 volume fraction added. The lattice constant of TiN increased linearly with the N/Ti ratio. The dome-like grains were obtained with the increase of N2 volume fraction but grew to form a continuous film as added with 40 vol.% N2. The growth rate of TiN film decreased with the increase of H2 volume fraction, with the reaction order of -0.50. For H2 addition, the lattice constant of TiN film was kept constant, but TC value of (200) reflection increased with the increase of H2 volume fraction. The etched grains were obtained with the increase of H2 volume fraction and resulted in the nodular morphology. The hardness increased but resistivity decreased with the increase of H2 volume fraction.
中文摘要 I
英文摘要 IV
總 目 錄 VII
圖目錄 X
表目錄 XV
英中文對照表 XVI
第一章 緖論 1
第二章 理論基礎及前人研究 4
2-1 TIN之反應熱力學 4
2-2 TIN之反應動力學 8
2-2-1 邊界層 8
2-2-2 CVD鍍膜之成核及成長 15
2-3 TIN之晶構及性質 21
2-4 前人研究 26
第三章 實驗方法 32
3-1 實驗流程 32
3-2 反應原料 33
3-3 實驗系統設計 33
3-4 沉積條件及實驗步驟 36
3-5 鍍層性質測試 38
第四章 NH3對CVD TIN鍍膜成長特性之影響 41
4-1 TIN之沉積溫度與成長速率 41
4-2 TIN鍍膜之結構與織構 50
4-3 TIN鍍膜之表面型態及微觀結構 56
4-6 小結 65
第五章 N2對CVD TIN鍍膜成長特性之影響 66
5-1 TIN之成長速率 66
5-2 TIN之計量比與結構 70
5-3 TIN之表面型態 76
5-4 TIN鍍膜之性質 76
5-5 小結 81
第六章H2對CVD TIN鍍膜成長特性之影響 82
6-1 TIN之成長速率 82
6-2 TIN之鍍膜結構及織構 85
6-3 XPS分析 87
6-4 TIN鍍膜之表面型態 92
6-5 TIN鍍膜之性質 92
6-6 小結 97
第七章 綜合討論 98
第八章 總結論 99
參考文獻 101
致謝 113
自述 114
著作 115
1. M. J. Buiting, A. F. Otterloo, and A. H. Montree, “Kinetical aspects of LPCVD of titanium nitride from titanium tetrachloride and ammonia”, J. Electrochem. Soc.,138 (1991) 500.
2. L. Imhoff, A. Bouteville, and J. C. Remy, “Kinetics of the formation of titanium nitride layers by rapid thermal low pressure chemical vapor deposition from TiCl4-NH3-H2”, J. Electrochem. Soc., 145 (1998) 1672.
3. T. Kaizuka, H. Shinriki, N. Takeyasu and T. Ohta, “Conformal chemical vapor deposition TiN(111) film formation as an underlayer of Al for high reliable interconnects”, Jpn. J. Appl. Phys., 33 (1994) 470.
4. C. Jiang, T. Goto and T. Hirai, “Morphology and preferred orientation of titanium nitride plates prepared by chemical vapor deposition”, J. Mat. Sci., 29 (1994) 669.
5. B. J. Kim, Y.-C. Kim, D.-K. Lee and J.-J. Lee, “The effect of NH3 plasma pre-treatment on the properties of TiN coatings produced by plasma-enhanced chemical vapor deposition (PECVD)”, Surf. Coat. Technol., 111 (1999) 56.
6. C.-C. Jiang, T. Goto and T. Hirai, “Non-stoichiometry of titanium nitride plates prepared by chemical vapor deposition”, J. Alloys Comp., 190 (1993) 197.
7. A. R. Chourasia and D. R. Chopra, “X-ray photoelectron study of TiN/SiO2 and TiN/Si interfaces”, Thin Solid Films, 266 (1995) 298.
8. A. Sherman, “ Growth and properties of LPCVD titanium nitride as a diffusion barrier for silicon device technology”, J. Electrochem. Soc., 137 (1990) 1982.
9. R. Leutenecker, B. Fröschle, U. Cao-Minh and P. Ramm, “Titanium nitride films for barrier applications produced by rapid thermal CVD and subsequent in situ annealing”, Thin Solid Films, 270 (1995) 621.
10. J. Hu, M. Ameen, G. Leusink, D. Webb and J. T. Hillman, “Electrical properties of Ti/TiN films prepared by chemical vapor deposition and their applications in submicron structures as contact and barrier materials”, Thin Solid Films, 308-309 (1997) 589.
11. F. C. Eversteijn, P. J. W. Severin, C. H. J. van den Brekel, and H. L. Peek, “A stagnant layer model for the epitaxial growth of silicon from silane in a horizontal reactor”, J. Electrochem. Soc., 117 (1970) 785.
12. M. L. Hitchman and K. F. Jensen, “ Chemical vapor deposition, principles and applications”, Academic press, New York, 1993 chapter 2. p. 32.
13. E. Morosanu, “Thin films by chemical vapor deposition”, Elsevier, 1990, chapter 5.
14. A. I. Kingon, L. J. Lutz, P. Liaw, and R. F. Davis, “Thermodynamic calculations for the chemical vapor deposition of silicon carbide”, J. Am. Ceram. Sco., 66 (1983) 558.
15. D. J. Twait, W. J. Lackey, A. W. Smith, W. Y. Lee, and J. A. Hanigofsky, “Thermodynamic analysis of chemical vapor deposition of BN+AlN composite coatings”, J. Am. Ceram. Sco., 66 (1983) 558.
16. “JANAF Thermodynamical Tables” ed. by R. H. Rerryttal, National Standard Reference Data System-National Burea of Standard 37, 2nd ed., June (1971).
17. M. Ohring, The Materials Science of Thin Films, Academic Press Inc., 1992,173.
18. N. Nakanishi, S. Mori, and E. Kato, “Kinetics of chemical vapor deposition of titanium nitride ”, J. Electrochem. Soc., 137 (1990) 322.
19. M. H. J. M. de Croon and L. J. Giling, “Chemical boundary layers in CVD”, J. Electrochem. Soc., 137 (1990) 2867.
20. R. W. Fox, A. T. McDouald, “Introduction to fluid mechanics”, 3rd ed., John Wiley & Sons, Inc., 1985, 34.
21. J. Korec and M. Heyen, “Modeling of chemical vapor deposition I. General considerations”, J. Crystal Growth, 60 (1982) 286.
22. D. W. Shaw, Crystal Growth-Theory and Technique, vol.1, ed. by C. H. L. Goodman, Plenum Press, New York, 1974, 1-48.
23. M. M. Faktor and I. Garrett, Growth of Crystals from the Vapor, Chapman and Hall, London, 1974,56.
24. C. H. J. V. Brekel, “Characterization of chemical vapor deposition processes”, Phips Res. Repts, 32 (1977) 118.
25. D. S. Rickerby and A. Matthews, “Advenced surface coatings: a handbook of surface engineering”, Chapman and Hall, New York, 1991 pp.179-183..
26. E. Sirth, L. P. Hunt and D. H. Sawyer, “High temperature reactions in silicon-hydrogen-chlorine system”, J. Electrochem. Soc., 121 (1974) 919.
27. C. M. Wayman and T. P. Darby, “Nucleation and growth of gold films on graphit”, J. Crystal Growth, 28(1975)53.
28. M. Harsdoff, “Heterogeneous nucleation and growth of thin films”, thin Solid Films, 90(1982)1.
29. H. Neddermeyer, “STM studies of nucleation and the initial stages of film growth”, Solid State and Materials Sciences, 16(1990)309.
30. D. A. Porter and K. E. Easterling, “Phase transformation in metals and alloys”, Chapman & Hall, 1981,186-203.
31. K. Sangwal, Etching of Crystals, Theory, Experiment, and Appication, eds. S. Amelinckx and J. Nihoul, North-Holland, 1987, p.47.
32. B. Lux, C. Colombier, and H. Altena, “Preparation of alumina coatings by chemical vapor deposition”, Thin Solid Films, 138 (1986) 49.
33. U. Jansson and J. O. Carlsson, “Area selective chemical vapor deposition of boron carbide achieved by molecular masking”, J. Vac. Sci. Technol., A6 (1988) 1733.
34. M. Kornamnn, H. Schachner, R. Funk, and B. Lux, “Nucleation of alumina layers on TiC and cemented carbides by chemical vapor deposition”, J. Crystal Growth, 28 (1975) 259.
35. J. O. Carlsson, Selective vapor-phase deposition on patterned substrates”, Crit. Rev. Solid State and Materials Science, 16 (1990) 161.
36. J. N. Lindstrom and R. T. Johnesson, “Nucleation of Al2O3 layers on cemented carbide tools”, J. Electrochem. Soc., 123 (1976) 555.
37. C. M. Wu and T. B. Wu, “Effects of LaNiO3 conductive buffer layer on the structural and electrical characteristics of Ba0.4Sr0.6TiO3 thin films prepared by rf magnetron sputtering”, Jpn. J. Appl. Phys., 36 (1997) 1164.
38. D. Kass and H. Strunk, “Growth-promoting dissociated dislocations in solution-grown silicon”, Thin Solid Films, 81 (1981) L101.
39. E. Bauser and H. Strunk, “Dislocation as growth step sources in solution growth and their influence on interface structures”, Thin Solid Films, 93 (1982) 185.
40. F. C. Frank, “ Edge dislocations as crystal growth sources”, J. Crystal Growth, 51 (1981) 367.
41. N. B. Ming, “Defect mechanisms of crystal growth and their kinetics”, J. Crystal Growth, 128(1993) 104.
42. F. C. Frank, Disc. Faraday Soc., 5(1949)48, cited in E. Budevski, G. Staikov and W. J. Lorenz, “Electrochemical phase formation and growth”, VCH, New York, 1996, p.237.
43. V. G. Shadrow, T. A. Tochitskii, and A. V. Boltushkin, “On the influence of twinning process on columnar crystallite growth in electrodeposited films”, Cryst. Res. Technol., 28 (1993) 157.
44. M. Froment and G. Maurin, Journal de Microscopie, 7(1968)39, cited in E. Budevski, G. Staikov and W. J. Lorenz, “Electrochemical phase formation and growth”, VCH, New York, 1996, p.267.
45. L. E. Toth, Transition metal carbides and nitrides, Academic press, New York, 1971.
46. H. Jiang, K. Tao, and H. Li, “ Structure of TiNx (047. J. F. Shackelf, “CRC Materials Science and Engineering Handbook”, CRC press, 1994.
48. L. Aggour, E. Fitzer, and W. Wersweiler, High Temperature and High Pressure, 6 (1974) 73.
49. S. R. Kurtz, R. G. Gordon, “Chemical vapor deposition of titanium nitride at low temperatures”, Thin Solid Films, 140 (1986) 277.
50. J. M. Musher and R. G. Gordon, “Atmospheric pressure chemical vapor deposition of titanium nitride from tetrakis(diethylamido)-titanium and ammonia”, J. Electrochem. Soc., 143(1996)736.
51. Ivo J. Raaijmakers, “Low temperature metal-organic chemical vapor deposition of advanced barrier layers for the microelectronics industry”, Thin Solid Films, 247(1994) 85.
52. J. A. Prybyla, C. M. Chiang, and L. H. Dubois, “Investigations of the growth of TiN thin films from Ti(Nme2)4 and ammonia”, J. Electrochem. Soc., 140 (1993) 2695.
53. G. W. A. Fowles and F. H. Pollard, J. Chem. Soc., (1953) 2588.
54. R. G. Gordon, “Recent advances in the CVD of metal nitride and oxides”, Mat. Res. Soc. Symp. Proc. 335 (1994) p.9.
55. M. R. Hilton, L. R. Narasimhan, S. Nakamura, M. Salmeron, and G. A. Somorjai, “Composition, morphology and mechanical properties of plasma-assisted chemically vapor deposited TiN films on M2 tool steel”, Thin Solid Films, 139 (1986) 247.
56. M. T. Schulberg, M. D. allendorf, and D. A. Outka, “Aspects of nitrogen surface chemistry relevant to TiN chemical vapor deposition”, J. Vac. Sci., A 14 (1996) 3228.
57. A. Bouteville, L. Imhoff, and J. C. Remy, “Thermodynamics of the formation of TiN from TiCl4-NH3-H2 on a patterned oxidized silicon substrate”, J. Electrochem. Soc., 140 (1996) 3251.
58. N. Yokoyama, K. Hinode, and Y. Homma, “LPCVD TiN as barrier layer in VLSI”, J. Electrochem. Soc., 136 (1989) 882.
59. J. T. Hillman, M. J. Rice, Jr., D. Srinivas, E. C. Eichman. W. M. Triggs, B. Sommer, M. Churley, and C. Bell, in Advanced Metallization for ULSI Applications, V. V. S. Rana, R. V. Joshi and I. Ohdomari, Matrials Reaserch Society, Pittsburgh, PA, 1991, p.311.
60. D. Srinivas, J. T. Hillman, W. M. Triggs, and E. C. Eichamn, in Advanced Metallization for ULSI Applications, V. V. S. Rana, R. V. Joshi and I. Ohdomari, Matrials Reaserch Society, Pittsburgh, PA, 1991, p.319.
61. O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, Pergamon Press, 1979.
62. G. B. Harris, Phil. Mag. 43 (1952) 113.
63. C. S. Barrett, T. B. Massalski, Structure of Metals, Pergamon Press, 1956, 204.
64. JCPDs Fils no., 38-1420, 1997.
65. K. J. Sladek, “The role of homogeneous reactions in chemical vapor deposition”, J. Electrochem. Soc., 118(1971)654.
66. R. I. Hegde, R. W. Fiordalice, E. O. Travis, and P. J. Tobin, “ Thin film properties of low-pressure chemical vapor deposition TiN barrier for ultra-large-scale integration application”, J. Vac. Sci. Technol., B11(1993) 1287.
67. D. Srinivas, J. T. Hillman, W. Triggs and E. C. Eichman, in Advanced Metallization for ULSI Applications, V. V. S. Rana, R. V. Joshi and I. Ohdomari, Matrials Reaserch Society, Pittsburgh, PA, 1991, pp. 319-322.
68. N. Yokoyama, K. Hinode, and Y. Homma, “ LPCVD titanium nitride for ULSIs”, J. Electrochem. Soc., 138 (1991) 190.
69. H. Kashani, M. H. Sohi, and H. Kaypour, “Microstructureal and physical properties of titanium nitride coatings produced by CVD process”, Mat. Sci. Eng., A286 (2000) 324.
70. B. D. Cullity, Elements of X-ray diffraction, 2nd edition, Addison-Wesley Publicaton Company, Inc., Massachusetts, 356.
71. J. Pelleg, L. Z. Zevin, S. Lungo and N. Croitoru, “Reactive-sputter-deposited TiN films on glass substrate”, Thin Solid Films, 197(1991)117.
72. R. W. Fiordalice, R. I. Hegde, and H. Kawasaki, ”Orientation control of chemical vapor deposition TiN film for barrier applications”, J. Electrochem. Soc., 143(1996)2059.
73. H. E. Cheng, M. J. Chiang, and M. H. Hon, “Growth characteristics and properties of TiN coating by chemical vapor deposition”, J. Electrochem. Soc., 142(1995)1573.
74. H. Kashani, M. H. Sohi, and H. Kaypour, “Microstructural and physical properties of titanium nitride coatings produced by CVD process”, Mat. Sci. Eng., A286 (2000) 324.
75. A. van der Drift, “Evolutionary selection, a principle governing growth orientation in vapor deposition”, Phillips Res. Repts., 22(1967)267.
76. J.-E. Sundgren, “Review paper: Structure and properties of TiN coatings”, Thin Solid Films, 128(1985)21.
77. J. S. Kim, E. J. Lee, J. T. Baek and W. J. Lee, “Effects of deposition parameters on composition, structure, resistivity and step coverage of TiN thin films deposited by electron cyclotron resonsnce plasma-enhanced chemical vapor deposition”, Thin Solid Films, 305 (1997) 103.
78. M. Guemmaz, A. Mosser, and J. C. Parebas, “Electronic changes induced by vacancies on spectral and elastic properties of titanium carbide and nitrides”, Journal of Electron Spectroscopy and Related Phenomena, 107 (2000) 91.
79. C. G. H. Walker, S. A. Morton, N. M. D. Brown, and J. A. D. Matthew, “ High-resolution Al K and high-photon energy Cr K-excited X-ray photoelectron spectroscopy of titanium nitride”, Journal of Electron Spectroscopy and Related Phenomena, 95 (1998) 211.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top