跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 19:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱大為
研究生(外文):Ta-Wei Chiu
論文名稱:射頻濺鍍法生長鉍鑭鈦鎢薄膜及其鐵電性質研究
論文名稱(外文):Study of Growth Behavior and Ferroelectricity of W-doped Bi4-XLaXTi3O12(BLTW) Thin Films Grown by Radio-Frequency Sputtering
指導教授:林文台
指導教授(外文):Wen-Tai Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:155
中文關鍵詞:鐵電鉍鑭鈦薄膜射頻濺鍍法
外文關鍵詞:BLT filmsRF-sputteringferroelectric
相關次數:
  • 被引用被引用:2
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:121
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以射頻濺鍍法生長以W取代Bi4-XLaXTi3O12(BLT)中Ti位置的BLTW薄膜並改變La與W的含量,其組成為Bi3.2La0.54Ti2.97W0.03(BL0.54TW0.03)、Bi3.2La0.73Ti2.97W0.03(BL0.73TW0.03)、Bi3.2La0.73Ti2.99W0.01(BL0.73TW0.01)、Bi3.2La0.73Ti2.95W0.05(BL0.73TW0.05)及Bi3.2La0.73Ti2.9W0.1(BL0.73TW0.1)共五種。並探討BLTW薄膜不同組成(La與W)、不同退火溫度(675至700℃)、不同退火氣氛(空氣、氧氣與氮氣)對其鐵電性質、漏電流及疲勞(fatigue)現象之影響。大多數BLTW薄膜於剛退火後遲滯曲線多少都有不飽和的現象。隨著時效時間經過,遲滯曲線漸漸飽和且殘留極化(2Pr)與矯頑力(2Ec)逐漸降至一定值。造成Pr隨時間遞減的機制可能為電荷缺陷擴散至晶格平衡位置、鬆弛效應與電荷缺陷釘住(pinning)晶域壁使其不易轉向的效應。與空氣中退火相比較,在氧氣與氮氣中退火將影響BLTW的結晶性較差,並且於氧氣中退火更會生成Bi2Ti2O7順電相,兩種情況皆會影響BLTW整體鐵電性質。殘餘極化(2Pr)值有隨著W含量自0增至0.03先增加而超過0.03則再隨之遞減的趨勢,這代表了BLT薄膜中添加W將對2Pr值造成兩種相反的效應(1)減少氧缺陷數量(2)降低晶格扭曲程度,隨著W增加後者影響越顯著。在漏電流的量測中,相同的電場(200kV/cm)下BLTW(10-7A/cm2)都較BLT(10-6A/cm2)薄膜低一個數量級。BLTW薄膜在較大的外加電場下進行疲勞測試可產生無疲勞(fatigue-free)的現象,這應該是field-assisted domain unpinning的效應所造成。取代元素含量增加(La與W取代Bi與Ti)也可改善BLTW薄膜的疲勞性質。二次退火(鍍Pt上電極之前先進行BLTW薄膜退火,之後再進行Pt/BLTW/Pt接觸退火)的試片所量測的各項鐵電性質均與一次退火(鍍完Pt上電極後再將Pt/BLTW/Pt進行退火,此時薄膜與接觸退火係同時完成)的試片大同小異,故一次退火應可成為簡化鐵電材料製程的一種方式。
The room temperature aging behavior, ferroelectricity, fatigue behavior, and leakage current of W-doped Bi4-XLaXTi3O12(BLTW) films with various La and W concentrations such as Bi3.2La0.54Ti2.97W0.03(BL0.54TW0.03), Bi3.2La0.73Ti2.97W0.03(BL0.73TW0.03), Bi3.2La0.73Ti2.99W0.01(BL0.73TW0.01), Bi3.2La0.73Ti2.95W0.05(BL0.73TW0.05), and Bi3.2La0.73Ti2.9W0.1(BL0.73TW0.1), which were deposited by radio-frequency(RF) sputtering and then annealed at a temperature of 675-750oC in air ,O2 and N2, respectively, were studied. Most of the polarization-electric field (P-E) loops of BLTW capacitors measured immediately after annealing showed somewhat leaky. Upon aging at room temperature the P-E loops could become saturated and thereafter the remanent polarization (Pr) and coercive field (Ec) decreased slowly with time and approached to a constant value. The mechanisms responsible for the decay of Pr with time may be the diffusion of charged defects to the equilibrium lattice sites, relaxation effect, and the domain pinning effect of charged defects. As compared with annealing in air, both annealing in O2 and N2 resulted in poor crystallization of BLTW films, furthermore, annealing in O2 could enhance the formation of pyrochlore Bi2Ti2O7 and thus degraded the ferroelectricity of the capacitors. The 2Pr increased with W concentration up to 0.03 and then dropped, indicating that adding W into the BLT films can induce two contrary effects on Pr, i.e., reducing the amount of oxygen vacancies and causing less structure distortion. With increasing the W concentration the latter effect gradually became dominant. The leakage current of BLTW capacitors is in the order 10-7 A/cm2 at the field of 200 kV/cm, being at least an order of magnitude lower than that of BLT capacitors. The BLTW capacitors showed fatigue-free at elevated cycling field, indicating that the fatigue-free behavior of BLTW capacitors is due to the field-assisted domain unpinning effect. The substitution of La and W for Bi and Ti respectively could improve the fatigue properties of BLTW capacitors. The ferroelectricity of the samples subjected to two-step annealing, viz., before deposition of top Pt electrodes the BLTW films are first annealed and then the contact annealing is performed on Pt/BLTW/Pt capacitors, is similar to that of the samples subjected to one-step annealing, viz., after deposition of top Pt electrodes the Pt/BLTW/Pt capacitors are annealed to simultaneously complete film and contact annealing.
本 文 目 錄

中文摘要……………………………………………………………Ⅰ
英文摘要……………………………………………………………Ⅲ
誌謝感言……………………………………………………………Ⅴ
本文目錄……………………………………………………………Ⅵ
表目錄……………………………………………………………Ⅸ
圖目錄……………………………………………………………Ⅹ

本文
第一章 簡介…………………………………………………1
1.前言…………………………………………………………1
1-1.電子記憶體………………………………………….. ..1
1-2.鐵電材料 ..…………………………………………….1
2.基本理論……………………………………………………6
2-1.極化理論……………..…………………………………6
2-2.脈衝極化及疲勞量測………………………………8
2-3.鐵電記憶體的讀寫原理……………………………9
3.Bi4-XLaXTi3O12(BLT)之基本結構………………………10
4.射頻濺鍍法…………………………….……………………11
4-1.濺鍍沈積原理 ..…….……………………………… 11
4-2.射頻濺鍍沈積 ..…….……………………………… 12
5.電子槍蒸鍍系統……………………………………………13
6.拉賽福背向散射儀 ……………………………………….. 14
7.研究理論基礎與動機..…………………………………….. 18
7-1.PZT鐵電薄膜 .………………………………………19
7-2.SBT鐵電薄膜 ………………………………………20
7-3.BTO與BLT鐵電薄膜……………………………….20
7-4.BTW與BTV鐵電薄膜………………………………22
7-5.本實驗研究動機—BLTW鐵電薄膜……………….23
第二章 實驗步驟與方法……………………………………24
1.實驗流程圖………………………………………...…….24
2.粉末配置與靶材燒結 ..…………………………………….25
3.基板(底電極)Pt/Ta/SiO2/Si製備…………………………25
4.BLTW鐵電薄膜製備………………………………………..26
5.薄膜退火 .……………………………………………………26
6.上電極製作 …………………………………………………26
7.接觸退火 …………………………………………………….27
8.鐵電性質量測與分析……………………………………….27
8-1.結晶相鑑定……………………………………………27
8-2.成分分析………………………………………………27
8-3.薄膜厚度與粗糙度測定……………………………..28
8-4.遲滯曲線、時效與疲勞量測………………………..28
8-5.漏電流量測……………………………………………28
第三章 結果與討論……………………………….……….....30
1.RBS成分分析………………………………………………..30
2.XRD結晶相分析…………………………………………….31
2-1.空氣中退火……………………………………………31
2-2.氧氣中退火……………………………………………32
2-3.氮氣中退火……………………………………………33
3.時效現象與遲滯曲線 ..…………………………………….33
3-1.退火溫度對時效現象與遲滯曲線之影響………….35
3-2.退火氣氛對時效現象與遲滯曲線之影響………….35
3-2-1.氧氣退火對時效現象與遲滯曲線之影響…………...35
3-2-2.氮氣退火對時效現象與遲滯曲線之影響…………...36
3-3.組成對時效現象與遲滯曲線之影響 .……………. 37
3-3-1.鑭(La)對時效現象與遲滯曲線之影響……………37
3-3-2.鎢(W)對時效現象與遲滯曲線之影響…………....38
3-4.外加電場對遲滯曲線之影響………………………………..40
4.I-V漏電流分析……………………………………………… 40
5.疲勞性質……………………………………………………...42
5-1.外加電場對疲勞性質之影響……………………………….42
5-2.鑭(La)對疲勞性質之影響……………………………….43
5-3.鎢(W)對疲勞性質之影響……………………………….44
5-4.氧氣氛退火對疲勞性質之影響 .………………………….45
6.二次退火之差異……………………………………………..47
第四章 結論……………………………….………..........….48
參考文獻………………………………………….…...........50
表 目 錄

表(一)各種用於鐵電薄膜製作技術之特徵比較……………57
表(二)PZT,SBT,BLT薄膜以Pt為電極之鐵電性質比較…58
表(三)(a)(b)本實驗各條件BLTW薄膜之分析量測結果…59
圖 目 錄
圖(一)遲滯曲線……………………………………………………...61
圖(二)製備鐵電薄膜的各種技術之發展…………………………...62
圖(三)鐵電陶瓷薄膜在元件上之應用……………………………...63
圖(四)鈦離子偏離中心形成電偶極………………………………...64
圖(五)(a)P-E遲滯曲線之操作電壓(b)脈衝極化測量之操作電壓(c)疲勞測試之操作電壓……………………………….65
圖(六)脈衝極化量測…………………………………………………66
圖(七)不同DRO記憶體電路構造,Cf, Cf1, Cf2為鐵電電容,T1, T2, P1, P2, 1N1∼N6為MOSFET …………………………..67
圖(八)2T-1C記憶晶胞電路圖………………………………………68
圖(九)讀寫電壓脈衝之操作………………………………………...69
圖(十)(a)PbBi2Nb2O9,(b)Bi4Ti3O12(c)BaBi4Ti4O15之一半擬正方晶體構造…………………………………………………..70
圖(十一)Bi3.25La0.75Ti3O12的晶格結構……………………………...71
圖(十二)(a)射頻濺鍍系統的示意圖(b)拉賽福背向散射儀俯視示意圖………………..........................................................72
圖(十三)BLTW試片之基本結構…………………………………...73
圖(十四)BL0.54TW0.03試片退火前之RBS成分分析圖……………74
圖(十五)BL0.73TW0.03試片退火前之RBS成分分析圖……………75
圖(十六)BL0.73TW0.03試片以700℃退火後之RBS成分分析圖….76
圖(十七)BL0.54TW0.03試片於空氣中退火之XRD繞射圖………...77
圖(十八)BL0.73TW0.03試片於空氣中退火之XRD繞射圖………...78
圖(十九)BL0.73TW0.01試片於空氣中退火之XRD繞射圖...………79
圖(二十)BL0.73TW0.05試片於空氣中退火之XRD繞射圖..……….80
圖(二十一)BL0.73TW0.1試片於空氣中退火之XRD繞射圖………81
圖(二十二)BL0.54TW0.03試片於氧氣中退火之XRD繞射圖………82
圖(二十三)BL0.73TW0.03試片於氧氣中退火之XRD繞射圖...…….83
圖(二十四)BL0.73TW0.01試片於氧氣中退火之XRD繞射圖...…….84
圖(二十五)BL0.73TW0.05試片於氧氣中退火之XRD繞射圖..……..85
圖(二十六)BL0.73TW0.03試片於氮氣中退火之XRD繞射圖..……..86
圖(二十七)BL0.73TW0.03試片(a)在空氣中與氧氣中750℃退火(b)在空氣中與氮氣中675℃退火(1 1 7)繞射峰的放大比較圖………………………………………………..……87
圖(二十八)BL0.73TW0.03試片700℃退火後0hr及1hr之遲滯曲線比較圖.…………………………………………………….88
圖(二十九)BL0.73TW0.03試片在空氣中不同溫度退火標準化2Pr值對時效時間比較圖…….………………………………….89
圖(三十) BL0.54TW0.03試片在空氣中不同溫度退火24小時後之遲滯曲線比較圖…………………………………………..90
圖(三十一)BL0.73TW0.03試片以675℃在空氣及氧氣中退火在時效過後之遲滯曲線比較圖…………………………………..91
圖(三十二)BL0.73TW0.03試片以700℃在空氣及氧氣中退火在時效過後之遲滯曲線比較圖…………………………………..92
圖(三十三)BL0.73TW0.03試片以750℃在空氣及氧氣中退火在時效過後之遲滯曲線比較圖…………………………………..93
圖(三十四)BL0.73TW0.03試片以675℃在空氣及氮氣中退火在時效過後之遲滯曲線比較圖…………………………………..94
圖(三十五)BL0.73TW0.03試片以700℃在空氣及氮氣中退火在時效過後之遲滯曲線比較圖…………………………………..95
圖(三十六)BL0.73TW0.03試片以750℃在空氣及氮氣中退火在時效過後之遲滯曲線比較圖…………………………………..96
圖(三十七)BL0.54TW0.03及BL0.73TW0.03試片於空氣中700℃退火經24小時的遲滯曲線比較圖…………………………….97
圖(三十八)BL0.73TW0.01、BL0.73TW0.03及BL0.73TW0.05試片於空氣中700℃退火後0hr之遲滯曲線比較圖………………….98
圖(三十九)BL0.73T、BL0.73TW0.03及BL0.73TW0.05三試片2Pr標準化對時效時間之比較圖…………………………………..99
圖(四十) 不同W含量之試片在經700、750℃退火24小時時效後其2Pr與2Ec值的變化圖…………………………..100
圖(四十一)BL0.73TW0.1試片於空氣中700℃退火之遲滯曲線…...101
圖(四十二) BL0.73TW0.03、BL0.73TW0.05及BL0.73TW0.1試片空氣中700℃退火後24小時的遲滯曲線比較圖…………….102
圖(四十三)BL0.54TW0.03、BL0.73TW0.03試片以700℃退火經24hr後2Pr值隨外加電場改變之比較圖……………………..103
圖(四十四)BL0.54TW0.03、BL0.73TW0.03試片以700℃退火經24hr後2Ec值隨外加電場改變之比較圖...…………………..104
圖(四十五)BL0.54TW0.01、BL0.54TW0.03、BL0.54TW0.05及BL0.73TW0.1試片以700℃退火經24hr後2Pr值隨外加電場改變之比較圖……………………………………………………105
圖(四十六)BL0.54TW0.01、BL0.54TW0.03、BL0.54TW0.05及BL0.73TW0.1試片以700℃退火經24hr後2Ec值隨外加電場改變之比較圖…………………………………………………....106
圖(四十七)BL0.73T與BL0.73TW0.03兩試片以700℃退火之I-V漏電流比較圖………………………………………………107
圖(四十八)BL0.54TW0.03試片以700℃在空氣中退火不同電壓量測之疲勞圖形………………………………………………108
圖(四十九)BL0.54TW0.03試片以700℃在空氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………109
圖(五十) BL0.54TW0.03試片以700℃在空氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………110
圖(五十一)BL0.54TW0.03試片以700℃在空氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………111
圖(五十二)BL0.54TW0.03與BL0.73TW0.03兩試片於空氣中700℃退火外加電壓4V之疲勞圖形……………………………..112
圖(五十三)BL0.54TW0.03與BL0.73TW0.03兩試片於空氣中700℃退火外加電壓5V之疲勞圖形……………………………..113
圖(五十四)BL0.54TW0.03與BL0.73TW0.03兩試片於空氣中700℃退火外加電壓7V之疲勞圖形……………………………..114
圖(五十五)BL0.73TW0.03試片以700℃在空氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………115
圖(五十六)BL0.73TW0.03試片以700℃在空氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………116
圖(五十七)BL0.73TW0.03試片以700℃在空氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………117
圖(五十八)BL0.73TW0.01、BL0.73TW0.03與BL0.73TW0.05三試片於空氣中700℃退火外加電壓4V之疲勞圖形………………118
圖(五十九)BL0.73TW0.01、BL0.73TW0.03與BL0.73TW0.05三試片於空氣中700℃退火外加電壓5V之疲勞圖形………………119
圖(六十) BL0.73TW0.01、BL0.73TW0.03與BL0.73TW0.05三試片於空氣中700℃退火外加電壓7V之疲勞圖形………………120
圖(六十一)BL0.73TW0.05試片以700℃在空氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………121
圖(六十二)BL0.73TW0.05試片以700℃在空氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………122
圖(六十三)BL0.73TW0.05試片以700℃在空氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………123
圖(六十四)BL0.73TW0.01試片以700℃在空氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………124
圖(六十五)BL0.73TW0.01試片以700℃在空氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………125
圖(六十六)BL0.73TW0.01試片以700℃在空氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………126
圖(六十七)BL0.54TW0.03試片以750℃在氧氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………127
圖(六十八)BL0.54TW0.03試片以750℃在氧氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………128
圖(六十九)BL0.54TW0.03試片以750℃在氧氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………129
圖(七十) BL0.54TW0.03試片以750℃在空氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………130
圖(七十一)BL0.54TW0.03試片以750℃在空氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………131
圖(七十二)BL0.54TW0.03試片以750℃在空氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………132
圖(七十三)BL0.54TW0.03試片以750℃在空氣中退火不同電壓量測之疲勞圖形………………………………………………133
圖(七十四)BL0.54TW0.03試片以750℃在氧氣中退火不同電壓量測之疲勞圖形………………………………………………134
圖(七十五)BL0.73TW0.01試片以750℃在氧氣中退火不同電壓量測之疲勞圖形………………………………………………135
圖(七十六)BL0.73TW0.03試片以750℃在氧氣中退火不同電壓量測之疲勞圖形………………………………………………136
圖(七十七)BL0.73TW0.05試片以750℃在氧氣中退火不同電壓量測之疲勞圖形………………………………………………137
圖(七十八)BL0.73TW0.01試片以750℃在氧氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………138
圖(七十九)BL0.73TW0.01試片以750℃在氧氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………139
圖(八十) BL0.73TW0.01試片以750℃在氧氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………140
圖(八十一)BL0.73TW0.03試片以750℃在氧氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………141
圖(八十二)BL0.73TW0.03試片以750℃在氧氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………142
圖(八十三)BL0.73TW0.03試片以750℃在氧氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………143
圖(八十四)BL0.73TW0.05試片以750℃在氧氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………144
圖(八十五)BL0.73TW0.05試片以750℃在氧氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………145
圖(八十六)BL0.73TW0.05試片以750℃在氧氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………146
圖(八十七)BL0.73TW0.01試片以750℃在空氣中退火不同電壓量測之疲勞圖形………………………………………………147
圖(八十八)BL0.73TW0.03試片以750℃在空氣中退火不同電壓量測之疲勞圖形………………………………………………148
圖(八十九)BL0.73TW0.05試片以750℃在空氣中退火不同電壓量測之疲勞圖形………………………………………………149
圖(九十) BL0.73TW0.01試片以750℃在空氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………150
圖(九十一)BL0.73TW0.01試片以750℃在空氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………151
圖(九十二)BL0.73TW0.01試片以750℃在空氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………152
圖(九十三)BL0.73TW0.03試片以750℃在空氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………153
圖(九十四)BL0.73TW0.03試片以750℃在空氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………154
圖(九十五)BL0.73TW0.03試片以750℃在空氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………155
圖(九十六)BL0.73TW0.05試片以750℃在空氣中退火外加電壓4V在疲勞性質量測前後的遲滯曲線比較圖………………156
圖(九十七)BL0.73TW0.05試片以750℃在空氣中退火外加電壓5V在疲勞性質量測前後的遲滯曲線比較圖………………157
圖(九十八)BL0.73TW0.05試片以750℃在空氣中退火外加電壓7V在疲勞性質量測前後的遲滯曲線比較圖………………158
1.毫微米通訊, 鐵電記憶體簡介, 第五卷第四期33.鐵電記憶體簡介.
2.R. A. Roy, K. F. Etzold, and J. J. Cuomo, Mat. Res. Soc. Symp. Proc. 200, 141(1990).
3.工業材料, 107期, 84年11月.
4.J. F. Scott, and C. A. Paz. de. Araujo, “Ferroelectric memories”, Science, 246, 1400(1989).
5.M. H. Francombt, and S. Krishnaswany, J. Vac. Sci. Technol. A8, 1382(1990).
6.G. A. Racine, R. Luthier, and N. F. Derooj, in Microelectro Mechanical System, Fort Lauderdale, FL 1993(IEEE, New York, 1993), PP128-132.
7.K. Brooks, D. Damjanovic, A. Kholkin, I. Renney, N. Setter, P. Luginbuhl, G. A. Racine, N. F. Derooij, and A. Saaman, Integr Ferroelec. 8, 13(1995).
8.A. M. Glass, Phys. Rev. 172, 564(1968).
9.H. P. Beerman, Ferroelectric, 2, 123(1971).
10. D. W. Chapman, J. Vac. Sci. Technol. 9, 425(1972).
11. J. C. Webster, and F. Zernike, Ferroelectrics, 10, 249(1976).
12. G. C. Messenger, and F. N. Coppage, IEEE Trans. Nucl. Sci. NS-35,
1461(1988).
13. S. K. Dey, and R Znleeg, Ferroelectric, 108, 37(1990).
14. C. A. Pazde. Araujo, L. D. Mcmillan, B. M. Melnick, J. D. Cucharo,
and J. F. Scott, Ferroelectrics, 104, 241(1990).
15. K. Ramkumar, J. Lee, A. Safari, S. C. Danforth, Mat. Res. Soc. Symp. Proc. 200, 121(1990).
16. R. Ramesh, A. Inam, W. K. Chan, B. Wilkens, K. Myers, K. Remschnig, P. L. Hart, J. M. Taroscon, Science, Vol.251, 17 May 1991.
17. W. Y. Wu, J. Appl. Phys. 50, 4317(1979).
18. E. C. Subbarao, Phy. Rev. 122, 849(1961).
19. J. F. Scott, “Ferroelectric memories a atatus report” present at Government Industry Review of Ferroelectric memories Sept 14-15, 1998.
20. D. Bondarant, and Fred Gnadinger “Ferroelectric, 1988 for
nonvolatile Rams” IEEE Spectrum, V. 26. pp. 30-33, July 1989.
21. B. M. Melnick, C. A. Araujo, L. D. Mcmilan, D. A. Caver, and J. F. Scott, Ferroelectrics, 116(1991)
22. C. H. Peng, J. Chang, and S. B, Desu, in A. I. Kingon, E. R. Myers and Tuttle(eds), Mater. Res. Soc Symp. Proc. Ferroelectric Thin FilmsII, MRS, Pittsburgh. PA, 7(1992), P. 21.
23. K. Aoki, Y. Fukuda, and A. Nishimura, J. Appl. Phys. 32(1993), 4147.
24. G. R. Fox, and S. B. Krupanidhi, J. Mater. Res. 9(1994), 699
25. J. F. Chang, and S. B. Desu, J. Mater. Res. 9(1994), 915.
26. P. C. Fazan, Integr. Ferroelect. 4, 247(1994).
27. W. Kinney, Integr. Ferroelect. 4, 131(1994).
28. R. Ramesh, A. Inam, B. Wilkens, W. K. Chan, D. L. Hart, K. Luther and J. M. Yarascon, Science, 252(1991), 944.
29. R. Remesh, J. Lee, T. Sands, and V. G. Keramidas, “Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O heterostructures on [001] Pt/SiO2/Si substrates using a bismuth titanate template layer.” Appl. Phys. Lett. 64(19), (1994)2511.
30. Arit, G. & Pertser, N. A. J. Appl. Phys. 70, 2283-2289(1991).
31. Artit, G. & Robels, U. Integ. Ferroelect. 3, 247-254(1993).
32. I. S. Zheluder, Physics of crystalline ielectrics (Plenum, New York,1971).
33. Plessner, K. W. Proc. Phys., Soc. B69, 1261-1269(1956).
34. Scott. J. F. and Araujo, C. A. Science, 246, 1400-1405(1989).
35. Duiker, H. H. Etal. J. Appl. Phys. 68, 5783-5789(1990).
36. Postnikov, V. S. Pavlov, V. S. Gvidnev, S. A. &Turkor, S. K. Sov. Phys. Solid. St.10, 1267-1270(1968).
37. Lohkamper, R. Neumann, H. & Arit G. J. Appl. Phys. 68, 4220-4227(1990).
38. I. K. Yoo, and S. B. Desu, Phys. Sol. (a)133. 565(1992).
39. B. Aurivillins. Ariki. Kemi. 1, 463, 499(1949); Ibid. 2, 519(1950).
40. C. A. Paz. De. Araujo, J. D. Cuchiaro, M. C. Scott, and L. D. Mcmillan, International publication No. Wo93/12542, (24 June 1993).
41. M. S. Jahn, D. W. Cooke, H. Sheinbery, J. L. Smitch, and D. P. Lianos, J. Mater, Res. 4, 759(1989).
42. Y. Tokura, H. Takagi, and S. Vchida, Nature, 337, 345(1989).
43. S. K. Dey, and R. Zuleeg, Ferroelectric, 108, 37(1990).
44. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted bismuth titanate for use in non-volatile memories.” Nature(London)401, 682(1999).
45. O. Auciello, J. F. Scott, & R. Ramesh, “The physics of ferroelectric memories.” Phys. Today, 51, 22-27(1998).
46. C. A. Araujo, et al. “Fatigue-free ferroelectric capacitors with platinum electrodes.” Nature 374, 627-629(1995).
47. M. Keijser, & G. J. M.Dormans, “Chemical vapor deposition of electroceramic thin films.” MRS Bull. 21, 37-43(1996).
48. H. D. Chen, K. R. Udayakumar, C. J. Gaskey, & L. E. Cross, “Electrical properties’ maxima in thin films of the lead zirconate-lead titanate solid solution system.” Appl. Phys. Lett, 67, 3411-3413(1995).
49. T. Nakamura, Y. Nakao, A. Kamisawa & H. Takasu, “Preparation of Pb(Zr,Ti)O3 thin films on electrodes including IrO2.” Appl. Phys. Lett, 65, 1522-1524(1994).
50. H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, & O. Auciello, “Influence of platinum interlayers on the electrical properties of RuO2/Pb(Zr0.53,Ti0.47)O3/RuO2 capacitor heterostructures.” Appl. Phys. Lett, 66, 239-241(1995).
51. O. Auciello, & R. Ramesh, “Laser-ablation deposition and characterization of ferroelectric capacitors for nonvolatile memories.” MRS Bull. 21, 31-36(1996).
52. C. A. Araujo, et al. “Ferroelectric dielectric memory cell can switch at least giga cycles and has low fatigue-has high dielectric constant and low leakage current.” US Patent No. 5, 519, 234(1996).
53. R. Dat, J. K. Lee, O. Auciello, A. I. Kingon, “Pulsed laser ablation synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric capacitors with practically no polarization fatigue.” Appl. Phys. Lett, 67, 572-574(1995).
54. T. Li, et al. “Metalorganic chemical vapor deposition of ferroelectric SrBi2Ta2O9 thin films.” Appl. Phys. Lett, 68, 616-618(1996).
55. K. Amanuma, T. Hase, & Y. Miyasak, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films.” Appl. Phys. Lett, 66, 221-223(1995).
56. S. E. Cummins, & L. E. Cross, “Crystal symmetry, optical properties, and ferroelectric polarization of Bi4Ti3O12 single crystals.” Appl. Phys. Lett, 10, 14-16(1967).
57. P. C. Joshi, & S. B. Krupanidhi, “Switching, fatigue, and retention in ferroelectric Bi4Ti3O12 thin films.” Appl. Phys. Lett, 62, 1928-1930(1993).
58. T. Kijima, M. Ushikubo, & H. Matsunaga, “New low temperature processing of metalorganic chemical vapor deposition- Bi4Ti3O12 thin films using BiOX buffer layer.” J. Appl. Phys. 38, 127-130(1999).
59. B. H. Park, et al. “Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12.” Appl. Phys. Lett, 74, 1907-1909(1999).
60. B. S. Kang, et al. “Different fatigue behaviors of SrBi2Ta2O9 and Bi3TiTaO9 films: role of perovskite layers.” Appl. Phys. Lett, 66, 239-241(1995).
61. Y. Noguchi, I. Miwa, Y. Goshima, M. Miyayama, “Defect control for large remanent polarization in bismuth titanate ferroelectrics -Doping effect of higher valent cations-.” Jpn. J. Appl. Phys. 39, 1259(2000).
62. 金屬工業34卷2期 中華民國89年3月, 45.
63. T. Choi, Y. S. Kim, C. W. Yang, & J. Lee, “Electrical properties of Bi3.25La0.75Ti3O12 thin films on Si for a metal-ferroelectric-insulator-semiconductor structure.” Appl. Phys. Lett., 79, 1516-1518(2001).
64. H. N. Lee, D. Hesse, “Anisotropic ferroelectric properties of epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different orientations.” Appl. Phys. Lett., 80, 1040-1042(2001).
65. T. Watanabe, H. Funakubo, M. Osada, Y. Noguchi, M. Miyayama, “Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition.” Appl. Phys. Lett., 80, 100-102(2002).
66. Y. Hou, X. H. Xu, H. Wang, M. Wang, S. X. Shang, “Bi3.25La0.75Ti3O12 thin films prepared on Si(100) by metalorganic decomposition method.” Appl. Phys. Lett., 78, 1733-1735(2002).
67. Lawrence H. Van Vlack, Materials science for engineers, P.273
68. 王明俊, 射頻濺鍍法生長鉍鑭鈦薄膜及其鐵電性質研究. 國立成功大學材料科學與工程研究所碩士論文. 中華民國九十一年六月
69. D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition.” J. Appl. Phys. 88, 5941(2000).
70. D. Dimos, H. N. Al-Shareef, W. L. Warren, and B. A. Tuttle, “Photoinduced changes in the fatigue behavior of SrBi2Ta2O9 and Pb(Zr,Ti)O3 thin films.” J. Appl. Phys. 80, 1682(1996).
71. Y. Noguchi, M. Miyayama, “Large remanent polarization of V-doped Bi4Ti3O12.” Appl. Phys. Lett., 78, 1903(2001).
72. C. C. Leu, M. C. Yang, C. T. Hu, C. H. Chien, M. J. Yang, and T. Y. Huang, “Effect of tantalum adhension layer on the properties of SrBi2Ta2O9 ferroelectric thin films.” Appl. Phys. Lett., 79, 3833(2001).
73. U. Chon, G. C. Yi, and H. M. Jang, “Fatigue-free behavior of highly oriented Bi3.25La0.75Ti3O12 thin films grown on Pt/Ti/SiO2/Si(100) by metalorganic solution decomposition.” Appl. Phys. Lett., 78, 658(2001).
74. U. Chon, H. M. Jang, S. H. Lee, and G. C. YI, “Formation and characteristic of highly c-axis-oriented Bi3.25La0.75Ti3O12 thin films on SiO2/Si(100) and Pt/Ti/SiO2/Si(100) substrates.” J. Mater. Res. 16, 3124(2001).
75. D. Wu, A. Li, T. Zhu, Z. Li, Z. Liu, and N. Ming, J. Mater. Res. 16, 1325(2001).
76. Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, and Z. Hiroi, “Crystal and electronic structures of Bi4-XLaXTi3O12 ferroelectric materials.” Appl. Phys. Lett., 79, 2791(2001).
77. 汪建民, 材料分析 (中國材料科學學會, 新竹市, 民國87)
78. L.R. doolittle, Nucl. Instr. Meth. B9 (1985) 334.
79.D. Wu, A. Li, H. Ling, T. Yu, Z. Liu, and N. Ming, “Room
temperature aging behavior of thermally imprinted Pt/SrBi2Ta2O9/Pt ferroelectric thin film capacitors.” J. Appl. Phys. 90, 4130(2001).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top