跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 03:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉若梅
研究生(外文):Ruo-Mei Liu
論文名稱:一維奈米碳材合成與微結構之研究
論文名稱(外文):Synethesis and Microstructure of One-dimensional Carbon Nano-materials
指導教授:丁志明丁志明引用關係
指導教授(外文):Jyh-Ming Ting
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:90
語文別:中文
論文頁數:133
中文關鍵詞:微波電漿輔助化學氣相沉積奈米碳管奈米碳線
外文關鍵詞:MP-CVDcarbon nanowirecarbon nanotube
相關次數:
  • 被引用被引用:9
  • 點閱點閱:639
  • 評分評分:
  • 下載下載:175
  • 收藏至我的研究室書目清單書目收藏:0
本研究以微波電漿輔助化學氣相沉積法成長一維奈米碳管/線,在此方法中反應氣體在微波電漿輔助下解離,可降低反應溫度,因此可將碳管/線沉積於矽晶片或玻璃基板上,而有助於奈米碳管/線在電子元件或場發射顯示器上之應用,且此製程又具有成長速率快、碳管/線純度及密度高、碳管/線直徑均勻等優點。本研究選用了四種不同之催化劑,包括塗佈磁鐵礦懸浮液、分子束磊晶法沉積鈷薄膜、濺鍍沉積鎳薄膜、及反應式濺鍍沉積Ni-DLC (diamond-like-carbon)薄膜等,藉由改變反應壓力、微波電漿功率、甲烷濃度來觀察奈米碳管/線之成長。除了具管狀結構之奈米碳管外,本研究亦得到奈米碳線,以及首次發現的graphene sheet垂直於縱軸之共接點奈米碳線。
當使用磁鐵礦懸浮液作為催化劑時,得到結晶性良好之竹節狀奈米碳管。而在適當條件下,可得到Y接點奈米碳管。
使用分子束磊晶法沉積之鈷催化劑薄膜時,碳管/線直徑差異大,且需要在較高壓力下才可得到表面平滑、結晶性良好之奈米碳管。
以直流濺鍍法沉積之鎳膜作為催化劑時,愈薄之薄膜可得到直徑較小的奈米碳管/線及較高比例之中空狀碳管,較厚的薄膜則大多得到奈米碳線。催化劑薄膜之結晶性亦會影響產物之型態,使用具有較佳結晶性之兩種厚度鎳膜則首次發現graphene sheet垂直於縱軸(生長方向)之共接點奈米碳線,此種奈米碳線呈放射狀地沿著單一面心立方碳化鎳(NiC)顆粒之[111]方向長出,並仍維持石墨結構[002]結晶方向。
由反應式直流濺鍍法沉積之Ni-DLC薄膜是由類鑽碳基材與平均分布在基材中之奈米鎳顆粒所組成,藉由改變濺鍍條件可得到不同大小之鎳顆粒。Ni-DLC薄膜在氫氣電漿處理後可得到蠕蟲狀之多晶鎳-碳化合物結構。在外加碳源(甲烷)環境下,則可藉由控制奈米鎳顆粒之大小而得到不同直徑之奈米碳管,但薄膜中鎳含量過高時反而使碳管產量降低。
Microwave plasma-enhanced chemical vapor deposition (MP-CVD) system was employed to grow carbon nanotubes (CNTs) and carbon nanowires (CNWs) in this research. Four different catalysts were used, including magnetite suspension solution, molecular beam epitaxy (MBE) deposited cobalt thin films, dc sputter deposited nickel thin films, and reactive dc sputter deposited Ni-containing diamond-like-carbon (Ni-DLC) thin films. The growth of CNTs were explored by varying the reaction pressure, microwave plasma power, and methane concentration. Besides CNTs, carbon nanowire and multiple carbon nanowire were also found. The graphene sheets in the multiple carbon nanowires appear perpendicular to the longitudinal axis.
When the magnetite suspension solution was used as catalyst, crystalline bamboo-structured CNTs were obtained. Y junction CNTs were also obtained under ambient condition.
When the MBE-deposited Co thin films were used as catalysts, CNTs/CNWs with a wide diameter range were obtained. Higher pressure was acquired to obtain CNTs with smooth surface and good crystallinity.
The third catalyst used was dc-sputter-deposited Ni thin films. The thinner Ni films gave CNTs/CNWs with smaller diameters and a higher percentage of tubular nanotubes. Multiple carbon nanowires grown from a single catalyst particle were first discovered using Ni films. The carbon nanowires grew along [111] direction of face-centerd cubic NiC particle. The graphene sheets in carbon nanowires were perpendicular to the longitudinal or growth direction.
Reactive-dc-sputter-deposited Ni-DLC thin films composed of DLC matrix and uniformly distributed Ni nanoparticles were also used as catalysts. The sizes of Ni nanoparticles can be controlled by the sputter condition. After hydrogen plasma treatment, wiggler-like polycrystalline Ni-C compounds were obtained. CNTs can be obtained using external carbon source (CH4). The diameters of CNTs were controllable by controlling the size of Ni nanoparticles. The yield of CNTs was lowered when the Ni content in Ni-DLC thin film was too high.
目 錄

摘要…………………………………………………………………….…I
Abstract……...…………………………………………………..……... III
致謝…………………………………………………………………….. V
目錄…………………………………………...……………………...…VI
表目錄………………………………………………………………... ..IX
圖目錄…………………………………………………………………...X
第一章 緒論…………………………………………………………......1
1-1 前言…………………………………………………….…….....1
1-2 研究動機與目的…….……………………………….………....9
第二章 文獻回顧………………………………………………..……..10
2-1 奈米碳管之結構與特性….………………….…………..…....10
2-1-1單層奈米碳管之結構與電性………………………..…..10
2-1-2多層奈米碳管之結構與電性……………………………11
2-1-3場發射特性………………………………………………12
2-1-4機械性質…………………………………………………13
2-1-5熱性質……………………………………………………14
2-2奈米碳管之成長機制…………………………………………22
2-3奈米碳管之合成方法…………………………………………26
2-3-1電弧放電法………………………………………….…..26
2-3-2雷射剝蝕法…………………………………………..….27
2-3-3化學氣相沉積法…………………………………….…..27
2-3-4電漿輔助化學氣相沉積法………………………….…..29
2-4奈米碳線………………………………………………………39
第三章 實驗…………………………………………………….……...41
3-1 實驗流程………………..………………………………….….41
3-2 微波電漿輔助化學氣相沉積系統……………………….…...43
3-3 實驗材料…………………………………….………….…..…45
3-3-1 基板材料…………………………………..…………..45
3-3-2 催化劑材料……………………………………….…...45
3-3-3 反應物…...………………………………………….....45
3-4分析與鑑定……………………………………………………46
3-4-1 薄膜結晶結構分析………………………….………...46
3-4-2 表面型態觀察………………………………….……...46
3-4-3微結構分析……………….……………………………46
第四章 結果與討論………….……………………………..…….…....47
4-1塗佈Ferrofluid催化劑懸浮液…….………………….....……47
4-1-1微波電漿功率之效應…………………………………...47
4-1-2甲烷濃度之效應………………………………………...48
4-1-3微結構分析……………………………………………...48
4-2分子束磊晶法沉積鈷催化劑薄膜…………………….……...60
4-2-1 氫氣電漿前處理………………………………….…...60
4-2-2 反應壓力之效應……………………………..………..61
4-2-3 微波電漿功率之效應………….………….…………..63
4-2-4甲烷濃度之效應………………………………………63
4-3 直流濺鍍法沉積鎳催化劑薄膜 ………………………...……75
4-3-1 氫氣電漿前處理……………………………………....75
4-3-2 反應壓力之效應……………………………….……...76
4-3-3 微波電漿功率之效應……………………………...….79
4-3-4 甲烷濃度之效應………………………….…………...79
4-3-5 催化劑薄膜厚度之效應…………………….………...81
4-3-6 共接點奈米碳管……………………………….……...82
4-4反應式直流濺鍍法沉積Ni-DLC催化劑薄膜…………..…104
4-4-1氫氣電漿成長奈米碳材………………………………104
4-4-2通入外加碳源成長奈米碳材…………………………106
第五章 結論…………………………………………………..…….…124
參考文獻………………………………………………………………126
[1] S. Iijima, Nature(London) 354(1991), 56.
[2] M. Monthlioux, B. W. Smith, B. Burteaux, A. Claye, J. E. Fischer, and D. E. Luzzi, Carbon 39(2001), 1251.
[3] T. W. Ebbesen and P. M. Ajayan, Nature 358(1992), 220.
[4] S Iijima and T Ichihashi, Nature 363(1993), 603.
[5] D. S. Bethune, C. H. Kiang, M. S. DeVries, G. Gorman, R. Savoy and R. Beyers, Nature 363(1993), 605.
[6] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, D. T. Colbert, G. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, Science 273(1996), 483.
[7]N. Wang, Z. K. Tang, G. D. Li, and J. S. Chen, Nature 408(2000), 50.
[8]P. Collins and P. Avouris, Scientific American, Dec. 2000, 38.
[9] T. W. Ebbesen, Carbon Nanotubes: preparation and properties, CRC press, 1997.
[10] B. I. Yakobson and R. E. Smalley, American Scientist, 85(1997), 324.
[11] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33(1995),883.
[12] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996.
[13] N. Hamada, S. Sawada, and A. Oshiyama, Physical Review Letters, 68(1992), 1579.
[14] O. Zhou, R. M. Fleming, D. W. Murphy, C. H. Chen, R. C. Haddon, A. P. Ramirez, and S. H. Glarum, Science, 263(1994), 1744.
[15] S. Amelinckx, D. Bernaerts, X. B. Zhang, G. Van Tendeloo, and J. Van Landuyt, Science, 267(1995), 1334.
[16] H. Dai, E. W. Wong, and C. M. Lieber, Science, 272(1996), 523.
[17]T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature, 382(1996), 54.
[18]W. Primak and L. H. Fuchs, Phys. Review, 95(1954), 22.
[19] W. A. de Heer, A. Chatelain, and D. Ugarte, Science, 270(1995), 1179.
[20] O. Gröning, O. M. Küttel, Ch. Emmenegger, P. Gröning, and L. Schlapbach, J. Vac. Sci. Technol. B, 18(2000), 665.
[21] M. Chhowalla, C. Ducati, N. L. Rupesinghe, K. B. K. Teo, and G. A. J. Amaratunga, Applied Physics Letters, 79(2001), 2079.
[22] A. M. Rao, D. Jacques, R. C. Haddon, W. Zhu, C. Bower, and S. Jin, Applied Physics Letters, 76(2000), 3813.
[23] J. M. King, W. B. Choi, N. S. Lee, and J. E. Jung, Diamond and Related Materials, 9(2000), 1184.
[24] H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, Applied Physics Letters, 76(2000), 1776.
[25] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Applied Physics Letters, 75(1999), 3129.
[26] J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature, 391(1998), 59.
[27] A. van Oostrom, J. Appl. Phys., 33(1962), 2917.
[28] B. I. Yakobson, in Fullerenes-Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, R. S. Ruoffand K. M. Kadish, Eds. (Electrochemical Society, Pennington, NJ, 1997), vol. 5(97-42), pp. 549-560.
[29] M. P. Campbell, C. J. Brabec, J. Bernholc, Comput. Mater. Sci. 8(1997), 341.
[30] B. T. Kelly, Physics of Graphite(Applied Science, London, 1981).
[31]B. I. Yakobson, Appl. Phys. Lett. 72(1998), 918.
[32] P. Zhang, P. E. Lammert, V. H. Crespi, Phys. Rev. Lett. 81(1998), 5346.
[33] M. Buongiorno Nardelli, B. I. Yakobson, J. Berhholc, Phys. Rev. B, 57(1998), R4277.
[34] M. Buongiorno Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. Lett. 81(1998), 4656.
[35] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science, 283(1999), 1513.
[36] J. Cumings and A. Zettl, Science, 289(2000), 602.
[37] M. Terrones, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, Topics in Current Chemistry, 199(1998), 1.
[38] R. S. Ruoff and D. C. Lorents, Carbon, 33(1995), 925.
[39] S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84(2000), 4613.
[40] J. Hone, M. Whitney, C. Piskoti, and A. Zettl, Phys. Rev. B, 59(1999), R2514.
[41] J. Hone, M. C. Llaguno, N. M. Nemes, A. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, and R. E. Smalley, Appl. Phys. Lett. 77(2000), 666.
[42] W. Yi, L. Lu, D-L Zhang, Z. W. Pan, and S. S. Xie, Phys. Rev. B, 59(1999), R9015.
[43] M. A. Osman and D. Srivastava, Nanotechnology, 12(2001), 21.
[44] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer: in press.
[45] J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, and J. E. Fischer, Appl. Phys. A, 74(2002), 339.
[46] M. Endo and H. W. Kroto, Journal of Physical Chemistry, 96(1992),6941.
[47] Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita and T. Hayashi, Chemical Physics Letters, 304(1999), 277.
[48] R. T. K. Baker and P. S. Harries, Chemistry and Physics of Carbon, Marcel Dekker, New York(1978), 83.
[49] R. T. K. Baker, M. A. Braber, P. S. Harries, F. S. Feates, and R. J. Waite, Journal of Catalysis, 26(1972), 51.
[50] R. T. K. Baker and J. J. Chludzinski, Journal of Catalysis, 64(1980), 464.
[51] A. Oberlin, M. Endo, and T. Koyama, Carbon, 14(1976), 133.
[52] A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth, 32(1976), 335.
[53] T. Baird, J. R. Fryer, and B. Giant, Carbon, 12(1974), 591.
[54] Y. J. Yoon and H. K. Baik, Diamond and Related Materials, 10(2001), 1214.
[55] S. Iijima and T. Ichihashi, Nature, 363(1993), 603.
[56] T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, and K. Tanigaki, Chem. Phys. Lett. 209(1993), 83.
[57] S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, and R. Loufty, Carbon 31(1993), 685.
[58] P. Bernier, W. Maser, C. Journet, A. Loiseau, M. L. de la Chapelle, S. Lefrant, R. Lee, and J. E. Fischer, Carbon, 36(1998), 675.
[59] S. Subramoney, R. S. Ruoff, D. C. Lorents, and R. Malhotra, Nature, 366(1993), 637.
[60] S. Zhou, S. Seraphin, and S. Wang, Applied Physics letters, 65(1994), 1593.
[61] Y. Saito, M. Okuda, M. Tomita, T. Hayashi, Chemical Physics letters, 236(1995), 419.
[62] Y. Saito, M. Okuda, N. Fujmoto, T. Yoshikawa, M. Tomita, and T. Hayashi, Jpn. J. Appl. Phy., 33(1994), L-526.
[63] T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, and R. E. Smalley, J. Phys. Chem., 99(1995), 10694.
[64] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, and R. E. Smalley, Science, 273(1996), 483.
[65] M. Jung, K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee, and J. W. Park, Diamond and Related Materials, 10(2001), 1235.
[66] S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, Materials Science and Engineering A, 286(2000), 11.
[67] X. H. Chen, S. Q. Feng, Y. Ding, J. C. Peng, Z. Z. Chen, Thin Solid Films, 339(1999), 6.
[68] C. J. Lee, J. Park, S. Y. Kang, J. H. Lee, Chemical Physics Letters, 323(2000), 554.
[69] C. J. Lee, J. H. Park, J. Park, Chemical Physics Letters, 323(2000), 560.
[70] N. Grobert et al., Applied Physics A, 70(2000), 175.
[71] M. Terrones et al., Nature, 388(1997), 52.
[72] M. Terrones et al., Chemical Physics Letters, 285(1998), 299.
[73] N. Krishnankutty, C. Park, N. M. Rodriguez, R. T. K. Baker, ct37(1997), 295.
[74] Q. Liang, Q. Li, D. L. Chen, D. R. Zhou, B. L. Zhang, Z. L. Yu, Chemical Journal of Chinese Universities-Chinese, 21(2000), 623.
[75] N. M. Rodriguez, M. S. Kim, F. Tortin, I. Mochida, R. T. K. Baker, Applied Catalyst A, 148(1997), 265.
[76] C. J. Lee, J. Park, J. M. Kim, Y. Huh, J. Y. Lee, K. S. No, Chemical Physics Letters, 327(2000), 277.
[77] K. Hernadi, A. Fonseca, J. B. Nagy, A. Siska, I. Kiricsi, Applied Catalysis A, 199(2000), 245.
[78] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, Science, 274(1996), 1701.
[79] Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, Chemical Physics Letters, 299(1999), 97.
[80] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, J. Appl. Phys., 84(1998), 6023.
[81] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, Appl. Phys. Lett., 71(1997), 2770.
[82] H. Masuda and M. Satoh, Jpn. J. Appl. Phys., Part 2, 35(1996), L126.
[83] J. Li, C. Papadopoulos, M. Xu, and M. Moskovits, Applied Physics Letters, 75(1999), 367.
[84] J. Li, C. Papadopoulos, J. Xu, Nature, 402(1999), 253.
[85] A. W. H. Mau, L. Dai, Journal of American Chemical Society, 121(1999), 10832.
[86] S. Huang, L. Dai, A. W. H. Mau, Journal of Physical Chemistry B, 103(1999), 4223.
[87] D. R. Lide, H. P. R. Frederikse, Handbook of Chemistry and Physics 75th, CRC Press, London, 1995, p51-52.
[88] P. E. Nolan, M. J. Schabel, D. C. Lynch, Carbon, 33(1995), 79.
[95] P. Pinheiro, M. C. Schouler, P. Gadelle, M. Mermoux, E. Dooryhee, Carbon, 38(2000), 1469.
[90] A. A. Khassin, T. M. Yurieva, V. I. Zaikovskii, V. N. Parmon, Reaction Kinectic and Catalysis Letters, 64(1998), 63.
[91] 徐逸明, 化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究, 國立成功大學化學工程研究所博士論文, 2001.
[92] 寇崇善, 微波電漿源之應用, 九十年度微波加熱與乾燥技術研討會.
[93]Y. S. Woo, D. Y. Jeon, I. T. Han, N. S. Lee, J. E. Jung, and J. M. Kim, Diamond and Related Materials, 11(2002), 59.
[94]Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science, 282(1998), 1105.
[95]Y. H. Wang, J. Lin, C. H. A. Huan, and G. S. Chen, Applied Physics Letters, 79(2001), 680.
[96]K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk, and D. Pribat, Applied Physics Letters, 79(2001), 1534.
[97]H. Wang, J. Lin, C. H. A. Huang, P. Dong, J. He, S. H. Tang, W. K. Eng, and T. L. J. Thong, Applied Surface Science, 181(2001), 248.
[98]M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, Applied Physics Letters, 77(2000), 3468.
[99]C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, Applied Physics Letters, 77(2000), 2767.
[100]Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Applied Physics Letters, 76(2000), 2367.
[101]C. Bower, W. Zhu, S. Jin, and O. Zhou, Applied Physics Letters, 77(2000), 830.
[102]Y. C. Choi, D. J. Bae, Y. H. Lee, B. S. Lee, I. T. Han, W. B. Choi, N. S. Lee, and J. M. Kim, Synthesis Metals, 108(2000), 159.
[103]Y. H. Tang, P. Zhang, P. S. Kim, T. K. Sham, Y. F. Hu, X. H. Sun, N. B. Wong, M. K. Fung, Y. F. Zheng, C. S. Lee, and S. T. Lee, Applied Physics Letters, 79(2001), 3773.
[104] H. Yokomichi, F. Sakai, M. Ichihara, and N. Kishimoto, Journal of Non-crystalline Solids, 299-302(2002), 868.
[105] S. Botti, R. Ciardi, M. L. Terranova, S. Piccirillo, V. Sessa, and M. Rossi, Chemical Physics Letters, 355(2002), 395.
[106] R. L. Vander Wal, and L. J. Hall, Chemical Physics Letters, 349(2001), 178.
[107]A. V. Melechko, V. I. Merkulov, D. H. Lowndes, M. A. Guillorn, and M. L. Simpson, Chemical Physics Letters, 356(2002), 527.
[108]J. Han, J. Yoo, C. Y. Park, H. Kim, G. S. Park, M. Yang, I. T. Han, N. Lee, W. Yi, S. G. Yu, and J. M. Kim, Applied Physics Letters, 91(2002), 483.
[109]W. Z. Li, J. G. Wen, Z. F. Ren, Applied Physics A, 74(2002), 397.
[110]C. Rao et al., Applied Physics Letters, 77(2000), 2530.
[111]W. Z. Li, J. G. Wen, and Z. F. Ren, Applied Physics A, 73(2001), 259.
[112]H. Y. Peng, N. Wang, Y. F. Zheng, Y. Lifshitz, J. Kulik, R. Q. Zhang, C. S. Lee, and S. T. Lee, Applied Physics Letters, 77(2000), 2831.
[113]L. P. Biró, G. Molnár, I. Szabó, Z. Vértesy, Z. E. Horáth, J. Gyulai, Z. Kónya, P. Piedigrosso, A. Fonseca, J. B. Nagy, and P. A. Thiry, Applied Physics Letters, 76(2000), 706.
[114]Y. Y. Wei, and G. Eres, Applied Physics Letters, 76(2000), 3759.
[115]Y. Y. Wei, G. Eres, V. I. Merkulov, and D. H. Lowndes, Applied Physics Letters, 78(2001), 1394.
[116]Y. Avigal and R. Kalish, Applied Physics Letters, 78(2001), 2291.
[117]J. I. Sohn, C. Choi, S. Lee, and T. Seong, Applied Physics Letters, 78(2001), 3130.
[118]J. M. Ting, N. Z. Huang, Carbon, 39(2001), 835.
[119]W. Y. Wu and J. M. Ting, D2-2-3, International Conference on Metallurgical Coatings and Thin Films, 2002.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top